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Abstract

One problem that can arise in a distributed computer system is that of orphans. These
are computations that continue to execute even though their results are no longer needed.
They can arise as a result of aborted transactions or node crashes. Orphans are bad be-
cause they waste resources and can see inconsistent data, causing a program to behave
unpredictably. The Argus system makes use of an algorithm to detect and destroy orphans
before they can cause harm. This scheme does not delay normal computations and avoids
unnecessary communication between nodes. This is accomplished by piggybacking orphan
detection information on normal system messages. The current version of this algorithm is
impractical because of the large amount of information that must be included in all messages
between nodes.

For this thesis, an optimization of the Argus orphan detection algorithm was imple-
mented. The optimization reduces the cost of orphan detection by storing orphan detection
information in a central server. This reduces the amount of orphan information sent in
normal system messages. The performance of the central server optimization was examined
under selected system loads and compared to that of another optimization called deadlin-
ing. These results show that while the central server method is more efficient than the
unoptimized version of the algorithm, it remains costly and the deadlining optimization is
superior.
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Chapter 1

Introduction

One problem that can arise in a distributed computer system is orphaned computations,

or orphans for short. Orphans are computations whose results are no longer needed. They

can arise in two different ways. An orphan can be created when a computation running at

one node of the system makes a request at another node and then aborts while the request is

still in progress. Any results returned by the request cannot be used, because the request's

parent no longer exists. An orphan created by the abort of its parent, or of some other

ancestor, is called an abort orphan. An orphan can also be created when a computation

performs a request at a node that later crashes, after the request has completed, but while

the parent (or some other ancestor) is still active. If the computation modified data at the

remote node, the modifications could have been lost in the crash. If the parent acquired

locks on data at the remote node, the locks may have been lost in the crash, allowing

another computation to modify data upon which the parent relies. In either case, any

results produced by the parent may be invalid; for this reason the parent is considered an

orphan. An orphan created in this way is called a crash orphan. Any active descendants of

a crash orphan are also considered crash orphans.

Orphans are bad for several reasons: they waste resources, they can damage data,

and they can see inconsistent data, causing a program to behave unpredictably. Several

methods [3, 10, 11] have been developed to detect orphans and to destroy them before they

cause harm.
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This thesis considers orphan detection in Argus [51, an experimental system for dis-

tributed programming. An algorithm for identifying orphans and destroying them before

they cause harm has already been included in the implementation of Argus [9]. This algo-

rithm involves adding information related to orphan detection to normal system messages;

this is known as "piggybacking". The Argus orphan detection algorithm never destroys

non-orphan computations, and always destroys orphans before they can see inconsistent

data, i.e. data that a non-orphan could not possibly see.

The algorithm used in Argus is too inefficient to be used in a production system, be-

cause of the large amount of orphan information that must be included in each message.

Two optimizations have been proposed to deal with this problem. One of these, called

deadlining, was proposed by Edward Walker [14] and implemented by Thu Nguyen [12]. It

involves discarding orphan-related information after a certain period of time, when it is no

longer needed, to reduce the amount of information included in each message. A second

optimization, proposed in [6), involves storing orphan detection information in a central

server, which is queried only when necessary.

This thesis presents an implementation of the central server optimi2ation to orphan

detection in Argus. We consider various issues in the design and implementation of this

approach, discuss the details of our implementadiuz and present the results of experiments

testing the performance of the algorithm.

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of

the Argus programming language and run-time system. We explain the major features of

Argus that are needed to understand the remainder of this paper. Chapter 3 describes the

Argus orphan detection algorithm. We examine both the original, unoptimized form of the

algorithm and the optimized version implementel as part of this thesis.

Chapters 4 and 5 describe the central server used to hold orphan information. Chapter 4

gives the specifications for the server and an overview of its implementation. In Chapter 5,

the implementation of the server is discussed in greater detail.
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Chapter 6 examines the modifications made to the Argus system to allow it to use our

server for orphan detection. We first describe the structure of the Argus run-time system,

and the way in which many common operations are performed. Next we examine the proce-

dure used to detect and destroy crash orphans and abort orphans, and the implementation

of system modules used for this purpose.

Chapter 7 examines the performance of the orphan detection algorithm under different

system loads. We consider the efficiency of individual operations related to orphan detection

and of the system as a whole. Our results are compared to those obtained by Nguyen (121 for

the deadlining optimization of the Argus orphan detection algorithm. Finally, Chapter 8

presents our conclusions, discusses related work, and gives some suggestions for future

research.
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Chapter 2

Overview of Argus

Argus [5, 8] is a programming language and run-time system designed to support dis-
tributed programs. These programs run on independent machines, each with its own local

state, that communicate with each other only through a communication network. The main

facilities that Argus provides for distributed programming are long-lived resilient objects,

called guardians, and atomic transactions, called actions for short.

2.1 Guardians

An Argus program consists of a number of modules called guardians. Guardians are the

logical nodes of an Argus system. Each guardian runs at a single physical node of the system,

but there may be many guardians at each node. A guardian is used to encapsulate data

objects; other guardians can access these objects only through calls to special operations

called handlers, which are provided by the guardian at which the data resides. Guardians

use remote procedure calls [11] to invoke each other's handlers. The definition of a guardian

also includes operations called creators, which are used to create new guardians of the same

guardian type. In addition to creators and handlers, a guardian may have code to perform

background tasks.

Guardians are resilient to crashes; each guardian maintains a stable state that can be
restored from stable storage (41 during crash recovery. A guardian can also contain volatile

objects, which are not saved on stable storage. Because volatile objects are not saved on
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stable storage, their values are lost in the event of a crash. Therefore, they should only

contain information that can be recovered to a correct state using the stable data. A

guardian may include recovery code to be run when the guardian recovers from a crash,

before it resumes processing handler calls. This code is responsible for reconstructing the

volatile data from the stable state.

At each node in the system, Argus provides a special guardian called the guardian

manager. The guardian manager is responsible for the creation of new guardians, and for

restarting guardians after a crash.

In Argus, it is also possible to create modules called progrums. Unlike guardians, pro-

grams do not have stable storage, and are not resilient to crashes. Programs can create

guardians and make handler calls, but have no handlers themselves. Therefore, programs

cannot receive calls. Programs are often used to create new guardians or to serve as the

"front end" between guardians and users.

2.2 Actions and Atomic Objects

Argus allows computations to run as atomic transactions, or actions for short. Each

action has the property that it either runs to completion or has no effect. In addition, actions

are serializable, i.e. the effect of a set of concurrent actions is equivalent to the some serial

execution of them. In Argus, actions can be nested. An action may have subactions, which

can commit or abort independently from the parent action. Many subactions of the same

parent can run concurrently. These subactions are serializable with each other. Subactions

do not run concurrently with their parents; execution of the parent is suspended until the

subaction completes. Each Argus computation starts as a top-level action (topaction). Each

topaction runs at the guardian where it was created. When an action makes handler calls,

the calls are run as subactions of the caller. Each handler action runs at the guardian to

which the handler belongs, and has direct access to that guardian's local objects. A handler

action may in turn invoke handlers at other guardians, creating new subactions of its own.

16



Argus provides special atomic objects that are used for synchronization and recovery.

Synchronization is provided by granting read and write locks to actions that access atomic

objects. An action may acquire a read lock for an object if no other action holds a write

lock for it; a write lock may be acquired only if no other actions hold read or write locks for

the object. There is one exception to this rule: an action may acquire a lock for an object if

the only actions holding conflicting locks are its ancestors. Atomic objects provide recovery

by means of versions. When an atomic object is modified by an action, a new version of

the object is created, and the changes are made only to the new version. This allows the

old version to be restored if the action aborts.

When an action aborts, any locks that it holds are released; the new versions of any

objects modified by the action are discarded. The commit of an action causes its locks

and versions to be inherited by its parent. In Argus, the commit of an action is relative:

the effects of a committing action cannot immediately be seen by other actions; they are

only visible to the committing action's parent and the parent's descendants. If the parent

action commits, any changes will become visible to its own parent (i.e. the first action's

grandparent); if the parent aborts, the effects of the child are completely undone. The

effects of a committed topaction are permanent and are visible to all other actions. When

an action has committed, and all of its ancestors up to and including its topaction ancestor

have also committed, the action is said to have committed through the top.

The commit of a topaction causes the two-phase commit protocol (1] to be performed.

This ensures that the action either commits everywhere or aborts everywhere. This is done

only for topactions, not for subactions.

It is also possible to create nested topactionh. A nested topaction runs as a child of the

action that created it. However, the effects of a committed nested topaction are perma-

nent, regardless of whether the action's parent commits or aborts. Two-phase commit is

performed for nested topactions as well as for ordinary topactions. Nested topactions are

not permitted to acquire locks held by their ancestors, or vice versa. Nested topactions can
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be used to perform benevolent side effects that should not be undone even if the parent

action aborts.

When a guard = crashes, all active local actions are aborted; their locks are released

and their versions are discarded. In addition, if any local actions have committed, but have

not yet committed through the top, their locks and versions are lost and their ancestors

(and other relatives) may become orphans.

2.3 Mutexes

Argus provides another special type of object for synchronization. These objects are

called mutezes, for mutual exclusion. Mutexes are similar to semaphores, except that in

addition to providing a lock for synchronization, a mutex also contains data. An action

obtains access to a mutex object by executing the seize statement; this gives the action

a lock for the mutex. The mutex lock is held while the body of the seize statement is

executed; it is then released. Only one action at a time can have a given mutex seized. When

an action attempts to seize a mutex that is already seized, it must wait until the mutex

is released, before it can proceed. Unlike atomic objects, mutexes do not have multiple

versions; therefore, modifications made to mutex data are not undone automatically if the

modifying action aborts. To ensure that a mutex is not left in an inconsistent state, an

action cannot be aborted (except by the crash of its guardian) while it has a mutex seized.

The Argus system does not copy a mutex to stable storage while any action has the mutex

seized; this guarantees that the mutex is not left in an inconsistent state if the guardian

crashes.

In the preceding discussion, many features of Argus that are not used in the remainder

of this paper were omitted. For additional information about Argus, the reader is referred

to [5, 8].
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Chapter 3

Argus Orphan Detection Algoritm

The Argus orphan detection scheme is designed to achieve several goals: we wish to avoid

unnecessary communication, delaying normal computations, and waiting for responses from

other nodes. For example, if an action is about to abort, and has active descendants at

other guardians, we do not want to wait until all of its these guardians have been notified

and the action's descendants have been destroyed; inability to communicate with the other

guardians may be the reason why the parent action is being aborted. Argus avoids this

problem by including orphan detection information in ordinary messages ("piggybacking").

The method used guarantees that orphans are destroyed before they can see "inconsistent"

data, i.e. data that a non-orphan could not possibly see.

3.1 Basic Algorithm

The orphan detection algorithm used in Argus is described in detail in [9] and [141. It

involves the use of two data structures at each guardian, called done and map, which are

used to detect abort orphans and crash orphans, respectively.

A guardian's copy of done is a list of actions that the guardian knows have aborted.

When a local action aborts, its name (called aid, for action identifier) is added to this list.

Any action having an ancestor in done must be an orphan and should be destroyed. To save

space, an action's aid is removed from done when an ancestor's aid is added; any descendant

of the first action must also be descended from the second, and will still be detected as an
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orphan. In addition, an action's aid is not added to done unless the action has remote

descendants. Without remote descendants, abort orphans cannot have been created; any

local descendants are destroyed when the action aborts. An abort that causes an entry to

be added to done is called a crucial abort.

A copy of done is included in (almost) all messages sent between guardians. (There are

a few messages in which it is not actually necessary to include a copy of done; see [14]).

Each message also contains the aid of the action (if any) on behalf of which the message

was sent.

When a guardian receives a message containing a piggybacked done it first aborts any

local actions descended from actions listed in the incoming done. (An action's aid contains

the aids of all of the action's ancestors, making it easy to tell how one action is related to

another). Next, the incoming done is merged (unioned) with the guardian's own copy of

done. Finally, the guardian determines whether the sender of the message is an orphan.

If the sending action is descended from some action in the receiving guardian's done, the

message is refused, and the sender's guardian is notified that the sending action is an orphan.

Otherwise, the message is processed normally.

To deal with crash orphans, each guardian maintains a data structure called map - a

list of other guardians and the number of times they have crashes. In general, the map will

not be completely up to date, but will reflect all crashes that the guardian "knows about".

If the map of a guardian G contains a crash count value of N for another guardian H, then

either H has really crashed N times, or no information has propagated from H to G since

the N + 1st crash; in this case it is safe for G to behave as though H has crashed only

N times. Each guardian records its own crash count on stable storage. When a guardian

recovers from a crash, it increments its crash count, records the new value on stable storage,

and adds the new crash count to its map. The guardian's map is included in (almost) every

message sent to other guardians.

Associated with each local action at a guardian is a dlist (short for dependencj list),
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a lIst of all guardians which, if they crashed, would cause the action to become a crash

orphan. The action is said to " depend on" these guardians. Essentially, an action becomes

dependent on a guardian if it acquires data from the guardian, or modifies data there, and

relies on the data continuing to be valid. Wheneve- a message is sent on behalf of an action,

the action's aid and dlist are :ncluded in the message.

Maintaining the dlists is fairly simple. Initially, each action's dist consists of its own

guardian and any guardians that its parent depended on when the action was created.

When one of the action's children commits, the child's dlist is merged (unioned) with the

parent's. If a child aborts, its dlist is discarded. An action can also become dependent on a

guardian by accessing an object for which one of its ancestors holds a lock; in this case, all

guardians on which the ancestor depends at the time the lock is acquired are added to the

descendant's dlist. The identity of these guardians is determined by querying the ancestor's

guardian during the process of obtaining the lock.

When a guardian G receives a message containing a piggybacked map, it first destroys

any local crash orphans it can detect. An action A is a crash orphan if there is a guardian

H in A's dlist with a larger crash count value in the incoming map than in G's own map.

(A became dependent on H when H had the lower crash count, and H has subsequently

crashed). After all local orphans are destroyed, the incoming map is merged with G's own

map. If the two maps contain different crash counts for the same guardian, the larger value is

used in the merged map. Finally, G determines whether the sending action is an orphan, by

examining the crash count values for guardians in the sender's dlist. If the sender depends

on a guardian whose crash count in G's map is larger than in the sender's map, the sender

must be a crash orphan; in this case a refusal message is sent to the sender's guardian. If

the sender is not an orphan, the message is processed normally.

Each guardian saves its map -ud done on stable storage whenever it participates in two-

phase commit. This is necessaxy to ensure that the guardian can be restored to a consistent

state when it recovers from a crash.
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3.2 Central Server Optimization

There is a serious problems with the orphan detection scheme as described so far:. map

and done become very large. Map contains a crash count for every guardian that has ever

existed, and done contains the aid of every action that has ever aborted. Information in map

and done is never deleted, so these data structures can grow without bound. In the present

Argus implementation, map and done entries are deleted after an arbitrary period of time

(one to four hours). The system does not guarantee that information will be retained as

long as it is needed, but after such a long period of time, the probability of active orphans

is considered acceptably small. Even so, because map and done are included in (almost)

every message between guardians, an unreasonable amount of overhead is produced.

One way to reduce the overhead associated with the Argus orphan detection algorithm

is to store orphan detection information in a central server. This optimization is described

in [6]. In this scheme, a central map server is used to hold a copy of the map. Each guardian

has its own copy of the map, and a timestamp, supplied by the server, indicating how recent

that copy is. Only these timestamps, not the entire map, are exchanged in messages between

guardians. This reduces the cost of inter-guardian communication. Guardians can obtain

a new map fron the server when necessary. If guardian crashes are relatively rare, the map

should not change very frequently, so guardians should not have to talk to the server too

often.

When a guardian recovers from a crash, it informs the central server of its new crash

count. The server records the new value in its copy of the map, saves the result to stable

storage, increments the timestamp, and returns the new map and timestamp.

Each time a guardian receives a message, it compares the incoming map timestamp

wiLh its own. If they are the same, the sending and receiving guardians have the same

map, and the message can be processed. If the receiving guardian's timestamp is newer, the

sending action may be an orphan; if so, then the message should be refused. (The method
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of determining whether the sender is an orphan is given below). If the sender's timestamp

is more recent, the receiving guardian requests a new map and timestamp from the server.

It uses the new map to detect and destroy local orphans and to determine whether the

sending action is an orphan. If the sender is an orphan, the message is refuned; otherwise

it is processed normally.

In order to make it possible to determine whether a message was sent on behalf of

an orphan, a small number of map entries are still included in messages. Each message

includes the map entries for guardians in the sending action's dlist this abbreviated map is

called the dmap (short for dlist map). After getting a new map from the server if necessary,

the receiving guardian compares the dmap entries with its own map entries for the same

guardians. If any guardian has a lower crash count in the incoming dmap than in the

recipient's map, the sending action is a crash orphan, and the message is refused by the

recipient.

When a ,.ardian is destroyed, the server is informed of this fact. The guardian's crash

count is then set to a, value representing infinity, larger than any integer. Eventually, the

entry for this guardian is removed from the map;, this prevents the map from growing without

bound. If a guardian destroys itself (by executing a terminate statement), it notifies the

server before it disappears. If the guardian is destroyed by the guardian manager, then the

manager notifies the server.

In principle, a central server could be used to hold done, as well as map, thereby elim-

inating the need to send done in messages. However, because done changes much more

frequently than map (i.e. every time an action aborts), guardians would need to communi-

cate with the server too often.

Although it is not practical to stop sending done in messages, a central server based

scheme can be used to reduce its size. When the server is used for this purpose, each

guardian maintains a stable counter called a generation count, which it periodicailly in-

crements. Whenever a (non-nested) topaction is created, it is tagged with its guardian's
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generation count. Any descendants of this action are tagged with the same generation

number. When an action aborts, its entry in done also includes this generation number.

Periodically, each guardian checks to see which of its generations still have active local ac-

tions. If all actions from the guardian's first N - 1 generations have completed (committed

or aborted), then the server is notified of that fact. The guardian informs the server that

the earliest generation that can have active actions is generation N.

A central generation server maintains a list of all guardians and their generation counts.

This list is called the generation map, or gmap. When a guardian notifies the server that the

Nth generation is the earliest that can have active actions, the server sets the guardian's

gmap value to N. It then returns the new version of gmap, and a timestamp indicating

how recent that version is. Each guardian maintains a copy of the gmap, along with its

associated timestamp. The timestamp of a guardian's grnap is. called the guardian's gener-

ation timestamp. The generation timestamp is included in (almost) all messages between

guardians.

Guardians can use information about generations to eliminate done entries that are

no longer needed. If a guardian's gmap value is N, then all top-level actions from that

guardian's first N - 1 generations have completed. Any active actions descended from

those topactions must be orphans, and can be destroyed. Let us define the origin of an

action as the guardian at which the action's non-nested topaction ancestor was created. If

an action in done has a generation number less than the gmap value for its origin, that

action's entry can safely be removed from done. Any of the action's descendants must

belong to the same generation, and will be detected as orphans using the information in

gmap.

When a guardian receives a message, it compares the incoming generation timestamp

with its own. If the two timestamps are the same, the sending and receiving guardians have

the same gmap, and the message can be processed normally. If the sender's timestamp is

newer, the receiving guardian requests a new gmap from the server, and uses it to detect
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local orphans, which are then destroyed. If the recipient's timestamp is newer, a new gmap

is not requested. After comparing timestamps, and obtaining a new gmap if necessary, the

receiving guardian determines whether the message was sent on behalf of an orphan. The

sending action is an orphan if its generation number is less than the gmap value for its

origin; in this case the message must be refused.

Because the central server is used to hold the map and gmap, it is not necessary for

each guardian to keep a copy of them on stable storage. Instead, each guardian keeps a

stable copy of its timestamps. Timestamps axe saved to stable storage when the guardian

participates in two-phase commit. During recovery from a crash, the guardian queries the

server to obtain versions of map and gmap at least as recent as it had before; as usual, the

server returns the new maps with timestamps indicating just how recent they are.

3.3 Replication of the Server

If guardians must rely on a central service in order to perform orphan detection, it is

important to prevent the server from becoming a bottleneck. If the server was implemented

as a single guardian, the entire system would stop working if that guardian ever crashed.

To avoid this problem, the server is replicated at several guardians (e.g. three to seven).

To maintain the consistency of data stored at different replicas, we use a scheme based

on the method described in [6]. In our implementation, it is possible to store data by

communicating with any replica. In order to retrieve information, it may be necessary to

communicate with one or more replicas. A "front end" for the map service or generation

service, running at the client's guardian, queries as many replicas as necessary to obtain

data recent enough to satisfy the client's needs. Each replica queried returns its version of

the data, as well as a timestamp indicating how recent that version is. When the front end

for the map service obtains sufficiently recent information, this information is then returned

to the client.

Replicas periodically send each other "gossip" messages, to communicate changes in the
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database. This reduces the number of queries the front end has to make. If gossip messages

are sent often enough, the front end will generally be able to get the information it needs

from the first replica it tries.

When this replication method is used, map versions can only be partially ordered: when

each of two replicas possesses information unknown to the other, neither of their maps can be

considered more recent. Some method is needed to allow replicas to generate appropriate

timestamps, reflecting this partial ordering. Each replica must be able to generate its

own timestamps independently, and newer stamps must always be associated with newer

information.

Multi-part timestamps (6] provide a solution to this problem. In this implementation,

a timestamp is a sequence of integers, containing one element for each replica of the server.

Each component of the stamp corresponds to a specific replica. One timestamp is considered

greater than or equal to another if every component of the first stamp is greater than or

equal to the corresponding component of the second stamp. The stamps are equal if all

corresponding components are equal. In all other cases, the timestamps are not comparable.

A replica may create new timestamps only by incrementing its own component of an existing

stamp, or by merging two existing stamps, as explained below.

Each replica is initially created with a timestamp in which every component is zero.

When a replica receives information from a client, it increments its own component of

the timestamp. Upon acquiring information from another replica, it merges the other's

timestamp with its own, by taking the larger value of each component, to obtain a stamp

at least as recent as either of them. Thus, larger timestamps are always associated with

newer information.

Each time a client guardian receives a message, it merges its own timestamp with the

stamp contained in the message; the client then asks the service for information at least

as recent as the merged timestamp. The guardian must obtain new information from the

service unless the incoming timestamp is less than or equal to the guardian's own stamp.
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Client guardians are not allowed to manufacture arbitrary timestamps. A client may

only create a zero timestamp, use a timestamp created by the service, or merge two properly

created stamps. This ensures that each timestamp possessed by a client corresponds to

information already in the service.

The above implementation of the server can be used in by our orphan detection scheme,

because guardians do not need the most recent version of map and gmap. It is sufficient

for a guardian to obtain any map and gmap whose timestamps are at least as recent as the

corresponding timestamps included in the incoming message.
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Chapter 4

Map Service Overview

The organization of the map and generation map services is similar to that described in

[6]. Client guardians communicate with the map server through an abstract data type called

map-service. The map.service provides all necessary operations for modifying and retrieving

map entries, while hiding the replication of the server from the client. An essentially

identical data type, called gen-aervice provides access to the generation map server. Several

calls to map-service and/or gen-service operations may run concurrently, without interfering

with each other. The server replicas themselves are implemented as guardians. Each replica

provides operations to add and delete map entries, to return the replica's current map

version, and to process gossip from other replicas. Replica operations are called only by the

map-service data type, or by other replicas, never directly by the client.

4.1 Specification of the Map Service

The specifications for map.service are given in Figure 4.1. Because this type of service

could be used in many applications, not just for orphan detection, the specifications are

given in general terms. The map service is modeled as a set of states associating unique ids

(uids) with integers. Each state corresponds to a version of the map, associating guardian

ids with their crash counts. Every state has an associated timestamp; states with larger

timestamps have newer information. In the specification of the service, the notation s(u)

refers to the value associated with uid u in state a; s.t stands for the timestamp of state j.
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map-service = data type is insert, delete, refresh

Overview:

The map.service associates uids with integers. It consists of a set Z of states, each
marked with a unique timestamp. Each state maps uids to integers. Initially, there
is a single state in which all uids are mapped to -oo. Insert and delete may cause
new states to be added to Z. States with larger timestamps associate larger values
with the uids: if Lh and t2 are timestamps and sl and 2 are their associated states,
then tL _< t 2 =, Vu:uid, . 1(u) _< 3 2(u); all operations must preserve this invariant.

The following procedure is not actually implemented; it is a "pseudo-operation"
used to define the behavior of insert and delete:

enter = proc (u: uid, x: int) returns (tinestamp)
requires: V. E Z,a(u) < oo
modifies: Z
effects: Adds zero or more new states ' to Z, each with V(u) = z. Each

new state is derived from some existing state s in which s(u) < x and
s(v) = s(v), for all v 4 u. Returns the timestamp r of some state ?°

with s*(u) 2! z. This state is either one of the new states added to Z
or an existing state. If there is not already a state in Z with s(u) 2_ -,
then at least one new state is added. For each state added to Z, the
associated timestamp is created in a way that satisfies the invariant.
This operation is atomic.

Operations:

refresh = proc (t: timestamp) returns (state, timestamp)
effects: Returns (s, s.ts), where a C Z, s.ts > t. This operation is atomic.

insert = proc (u: uid, x: int, t: timestamp) returns (state, timestamp)
requires: Vs = Z, s(u) < co
modifies: Z
effects: equivalent to refresh(merge.stamps(enter(ux),t)). The insert operation

is composed of atomic steps but is not atomic itself.

delete = proc (u: uid, t: timestamp) returns (state, timestamp)
modifies: Z
effects: equivalent to insert(u,oo,t)

end map-service

Figure 4.1: Specifications for the Map Service
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In order to express the map.ervice specifications more clearly, we define a "pseudo-

operation" called enter. This operation is not actually implemented; it is used only to

define the behavior of other operations. The enter operation increases the value associated

with a uld u to a given value z. If the map service does not contain a states with s(u) 2_ z,

then this operation creates a new state s' with s(u) = z and adds it to the service. The new

state is derived from an existing state with a smaller value for u; in the new state, all uids

except for u have the same values as before. Many such states may be created. New states

with s'(u) = z may be created even if the map service already contains a state in which

s(u) _> z. This operation returns the timestamp to of a state s" reflecting the change to the

map. The state so is either a new state, created by this operation, in which so(u) = z, or

an existing state with s°(u) _: z. The enter operation is atomic.

The map.service data type provides three operations that can be used by clients. These

are called refresh, insert and delete. The refresh operation is used to obtain a new version of

the map. It takes a timestamp as an argument; this timestamp indicates the earliest version

of the map taat the client can use. Refresh does not add states to the service; it simply

returns an existing state and its associated timestamp. The refresh operation is atomic.

The map service also provides an insert operation, which clients use to increase the

value associated with a uid, and to obtain a state and timestamp reflecting the change.

The insert operation is equivalent to an enter followed by a refresh. Insert takes three

arguments: a uid u and value z to be supplied to enter, and a timestamp t indicating the

earliest state the client is willing to accept. The timestamp returned by enter is merged

with the supplied stamp t, creating a stamp at least as large as each of them. The merged

stamp then becomes the argument to refresh. Although insert is composed of two atomic

operations it is not atomic itself. If two insert operations are run concurrently, each of them

may return a state reflecting both changes to the map.

A client can delete a uid from the map by using the delete operation. This procedure

maps the uid to a value representing infinity, larger than any integer. The delete operation
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is equivalent to an insert with a value of infinity. Like insert, this operation is composed of

two atomic steps, but is not atomic itself.

The specifications for the map service operations are non-deterministic. Non-deter-

minism is introduced because operations may be performed at any replica of the server;

different replicas may have different versions of the map. Any version with a sufficiently

recent timestamp is acceptable to the client, so there is no need to contact every replica.

Therefore, there is no guarantee as to precisely which state will be returned.

4.2 Replica Specifications

Figure 4.2 gives the specifications for the server replicas. In the figure, the notation t[i]

refers to the ith component of timestamp t. As in the case of the map service, a(u) is the

value of uid u in state j.

The server replica guardian type provides a creator called new, which constructs a new

replica with an empty state and zero timestamp, and operations to insert and delete uids

and to return the replica's state and timestamp. Each server replica has an insert operation,

which adds a uid u to the replica state with a given value z, and returns the resulting state

and timestamp. If u already has a value greater than or equal to z, then the state is not

changed and the current state and stamp are returned. Replicas also have a delete operation,

which sets the value of a given uid to o, and returns the resulting state and stamp. If the

uid already has a value of oo, then no changes are made and the current state and stamp

are returned. A refresh operation is also provided by each replica; this operation returns the

replica's current state and timestamp. In addition to the above operations, each replica has

a receive-gossip routine, which is used to process gossip from other replicas. This routine

takes a state and timestamp from a gossip message and merges them with the replica's

current state and stamp.

The specifications for the replica operations are somewhat different from those of the

corresponding routines of the map.service data type. The replicas' insert, delete and refresh
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server.replica = guardian is new

with operations insert, delete, refresh, receivegossip

Overview:

A mutable mapping from uids to integers. A replica r is (i, s, t), where j is a
state mapping uids to integers, t is a timestamp associated with a, and i is an
integer identifying this replica of the server. Replica states with larger timestamps
associate larger values with the uids: if t1 and t 2 are timestamps and J1 and 2 are
their associated states, then tj _< t2 =: Vu :uid,s1(u) 5 02(u); all operations must
preserve this invariant. All server replica operations are atomic.

Operations:

new = creator (i: int) returns (server.replica)
effects: returns (i,a,t), where t is a zero tinestamp and s(u) -- -o for all u.

insert = proc (u: uid, x: int) returns (state, timestamp)
requires: 3(u) < oo
modifies: r
effects: sets r equal to (i, s, t), where s'(u) = max(a(u), z); i'(v) - a(v), Vv 9 u;

if 9(u) > z, then e = t; otherwise e[i] > t[i] and Lij] = tli],vi # i.
Returns (.', e).

delete = proc (u: iuid) returns (state, timestamp)
modifies: r
effects: sets r equal to (i,a,e), where s'(u) = oo; s(v) = 3(v), Vv # u; if

,(u) = oo, then t = t; otherwise i'[i] > t[i] and te =l t=j],Vj o i.
Returns (s', ').

refresh = proc () returns (state, timestamp)
effects: returns (s, t)

receive.gossip = proc (s.: state, t.: timestamp)
effects: sets r equal to (i, s,'), where Vu,.s(u) = max(s(u),.,(u)) and e =

merge(t, t.).

end server.replica

Figure 4.2: Server Replica Specifications
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operations do not take timestamps as arguments; they simply modify the current state, if

necessary, and return the new state and timestamp. All replica operations are deterministic;

they operate on what ever state the replica currently has.

Unlike ordinary guardians, server replicas have "operations" rather than handlers. These

operations are simply procedures that run at the replica. Rather than making handler calls,

the map.service data type sends low-level system messages to the replicas, instructing them

to invoke these operations and send back the results. The reasons for avoiding handler calls

for communication with replicas are given in Chapter 5.

4.3 Implementation

In this section, we present a simplified description of the implementation of the

map-service data type and of the server replicas. A more detailed discussion of this imple-

meutation is given in the next chapter.

4.3.1 Map Service Operations

When the map.service data type's insert operation is called with uid u, value z, and

timestamp t, the map.service sends an insert(u, z) message to any replica of the server.

This instructs the replica to invoke its own insert operation, with arguments of u and z;

the resulting state and timestamp are then returned to the map.service. If the returned

timestamp t is greater than or equal to the requested stamp t, then the map.seruice returns

the map and stamp to the client. Otherwise, the map-service sends refresh messages to other

replicas, one at a time, to obtain their states and stamps. These states and timestamps are

merged with those already received. Eventually a sufficiently recent map and stamp are

obtained, and these are returned to the client.

When a replica receives an insert(u, z) message, it invokes its insert operation as re-

quested. When this operation is executed, the replica looks up u in its version of the map
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to determine whether its value is less than x. If so, the replica sets the value of u to z, and

increases its timestamp, by incrementing the stamp component that it is allowed to change.

If the value of u is greater than or equal to z, then the map and timestamp are not changed.

In either case, the replica's new map and timestamp are returned to the map..-ruice.

The implementation of the delete operation is similar to that of irwert. The map.-service

sends a delete(u) message to a replica, instructing the replica to run its own delete operation

with argument u. The resulting state and timestamp are sent back to the map.service. If

the new timestamp returned by the replica is at least as large as the stamp supplied by

the client, then the map-service returns the new state and stamp. If the new stamp is not

large enough, then the map-service sends refresh messages to other replicas, until suffcienly

recent information has been obtained.

When a replica executes its delete operation with an argument u, it determines whether

uid u has already been deleted (i.e. whether its value is already equal to oo). If not, the

map is changed, and the timestamp is incremented. In either case, the map and timestamp

are returned to the map-service.

To perform the refresh operation, the map.service sends a refresh message to any replica.

This causes the replica to invoke its own refresh operation. The replica sends its map and

timestamp to the map.service, which returns them to the client if the stamp is large enough.

Otherwise, the -nap.service queries additional replicas until sufciently recent information

is obtained.

Periodically, each replica sends a gossip message to each of the other replicas. This

message contains the replica's current map and timestamp. When a replica receives a gossip

message, invokes the receive-gossip operation. This routine first examines the message's

timestamp. If the message timestamp is less than or equal. to the replica's stamp, then the

message contains no new information and is ignored. Otherwise, the replica merges the

incoming map with its own. If a uid appears in either of the two maps, its value is included

in the merged map; if a uid has different values in the two maps, the larger value is used.
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The incoming timestamp is then merged with the replica's stamp, by taldng the larger value

of each component.

4.3.2 Removing Deleted Entries

As discussed in (61, it is necessary to be careful in dealing with entries for guardian ids

that have been deleted from the database (i.e. map entries with a value of oo). Clearly, we

do not want to retain these entries forever. However, if these entries are simply removed

from the map, the server cannot distinguish ids that have been deleted from nids that

never were entered at all. If a server replica removes an entry from the map and later

receives a message to insert a new entry for the same uid, the insert message should be

ignored, but the replica has no way of knowing this.

Another problem involving deleted entries occurs if one r-plica of the server removes

an entry from its map before the others learn that the entry is being deleted. One of the

other replicas could then send a gossip message to the first, containing a finite value for the

same ud. Again, the first replica would not be able to determine whether the uid should

be inserted. Thus, a replica cannot delete an entry unless it can be sure that no more enter

messages or gossip messages will be received that contain finite values for the same ud.

In our implementation of the server, we solve these problems using the method described

in [6]. First, we require that no client can insert an entry for a uid into the map after that

id has been deleted. When the map service is used for orphan detection, each guardian

inserts and deletes only its own id, so this constraint should never be violated. However,

because of the possibility of network failures, messages may be delayed or delivered out of

order. Therefore, it is still possible for a replica to receive an insert message after a delete

message for the same uid.

To deal with late insert messages, a replica discards any message received more than a

certain time after it was sent. Each message from the map.service to a replica contains the
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time at which the message was sent, as measured by the sender's clock. Let r, be the time

a message is received, r- the time it was sent, and 6 the largest apparent delay after which

we will still accept a message. Any message for which r, - r, > 6 will be discarded. Now

suppose that a replica receives a delete message that was sent at time 7",, according to the

sender's dock. An insert message for the same aid could have been sent by the same client

as late as rd, but no later, and will be discarded if received after rdj + 6. Thus, the entry for

this uid should not be removed until r- + 6.

If we assume that guardians' clocks are loosely synchronized, with maximum skew e,

the actual time this scheme allows for delivery of a message will vary between 6 - e and

6 + c. Therefore, 6 should be chosen large enough to allow most messages to be delivered,

but small enough to avoid excessive delays in garbage collection.

Our method of removing deleted entries also assumes that clocks are never set back.

If a guardian's clock ever was set back, the mcp..service implementation at that guardian

could send a server replica an insert message having a later time than a subsequent delete

message for the same uid. If the guardian's clock must be set back, the time values included

in its map service messages must not change, until the clock reaches its previous maximum

value.

If we allow more than one client to perform insert operations for the same uid, as long

the ud is not inserted after it is deleted, then deleted entries must be retained until rd + 6 +e,

not just until rd + 6. This allows for the possibility that the inserter's clock is slower than

the clock of the client making the deletion.

To allow garbage collection of deleted entries, each replica maintains a table of map

entries that have been deleted (i.e. set to an infinite value) but not actually removed. Each

entry in this table contains the aid of the deleted entry, the time at which the delete message

for the entry was sent, and the replica's timestamp after executing the delete operation.

Each replica also maintains a table of the other replicas' timestamps, indicating the least

recent timestamp each replica could possibly have. Periodically, the replica examines the
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table of deleted entries, to determine which of them can be removed from the map and from

the table itself.

An entry cannot be removed until all of the server replicas have learned that the entry has

been deleted. This is determined by comparing the entry's timestamp with the timestamps

of the replicas. The entry cannot be purged unless every replica's timestamp is greater

than or equal to the stamp of the entry, ensuring that every replica knows of the change.

In addition, an entry must be retained until the current time at the replica is later than the

time of the entry plus the maximum message delay 6. Once both of these conditions are

satisfied, the entry can be purged.

4.3.3 Optimizing Gossip Messages

It is not necessary for a replica to send the entire map in gossip messages. Instead, the

replica can maintain a list of map entries that the other replicas may not have seen. Each

time a change is made to the map, the new map entry can be added to this list, along with

the replica's timestamp after making the change. An entry need not be sent to a replica if

the entry's timestamp is less than or equal to the recipient's. When all romlicas' timestamps

are greater than or equal to the entry's stamp, the entry can be removed from the gossip

list. The other replicas' timestamps can be estimated based on the timestamps they have

sent in their own gossip messages; these estimates will be lower bounds, so information will

not be removed from the gossip list too soon.

When gossip is handled in this manner, each gossip message includes the following

information: the identity of the sender, the timestamp of the sender after all entries in the

gosip set were added to the map, and the gossip entries themselves. Each entry consists of

a guardian id, its new map value, and the timestamp value when the update was processed.

In addition, a deleted entry (i.e. an entry with a value of infinity) contains the time at which

the client sent the delete message. Replicas use the timestamp values to determine which

entries to pay attention to; any entry with a stamp earlier than the replica's own stamp can

38



be ignored. Both time and stamp values are used to determine when deleted entries can be

garbage collected.

Gossip messages must include a timestamp for each deleted entry. This enables the

recipient to add the entry to its deleted entry table with an appropriate stamp. If the

recipient simply used its current timestamp, the entries' stamps could become later and

later, and the entries might never be garbage collected.

It is not strictly necessary for gossip messages to include the time values for each entry.

To allow deleted entries to be garbage collected, each replica could construct a deleted entry

containing the time at which it received the entry plus c, the maximum clock skew. These

time values will be later than the original delete time, so deletion cannot occur too soon.

The time values cannot get later fore';er; at some point every replica will have a timestamp

later than the entry's stamp, and it will no longer be sent in gossip messages. Thus, the

entry will eventually be garbage collected. However, garbage collection of the entries could

be delayed by an amount equal to the maximum skew.

Gossip messages need not include timestamps for insert entries. Because the value

associated with a guardian id can never decrease, a replica could simply ignore a gossip

entry unless the value it specified was higher than the replica's own value for the same id.

If a replica has already garbage collected a deleted entry for a uid u, then the sender must

have learned about the deletion, and subsequently gossiped to the recipient. In this case,

the recipient's timestamp will now be later than the sender's stamp was at the time the

sender learned of the deletion. If a message subsequently received from the sender has a

later stamp, that message must contain an infinite value for u. Any message with a finite

value for this ud must have an earlier stamp, so the whole message will be ignored by

the recipient. If this optimization is used, the recipient can still garbage collect the gossip

list properly. When a gossip message is processed, and new insert entries are added to

the recipient's gossip list, the entries can be tagged with the timestamp of the incoming

gossip message, allowing garbage collection when all replicas' timestamps are larger than
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this value.

The above discussion assumes that finite and infinite values for a given uld are never

sent in the same gossip message. To ensure this, each replica should remove finite valued

entries for a uid from the gossip list when an infinite value for that nid is inserted, and

should not add a finite value for a gid whose value is known to be infinite.

4.3.4 Reconfiguration

The map server design should allow for the possibility of reconfiguration of the service.

From time to time, both the number and location of server replicas may changes. In the

present implementation, installing a new configuration requires shutting down the map

service temporarily, while the new replicas are constructed. Reconfiguration involves the

following steps:

1. Each replica must be told to stop processing client requests.

2. The states of all replicas must be obtained and merged.

3. New replicas must be constructed, each containing the new state.

The new replicas may then begin processing clients' requests.

It is necessary to have some way for replicas and clients to interpret timestamps from

different configurations. Our implementation deals with this problem as suggested in [2].

Each timestamp contains a configuration number identifying the map service configuration

in which it was generated. Later configurations are assigned higher configuration numbers.

Any timestamp from a later configuration is considered greater than any timestamp from

earlier configurations. The merge of stamps from different configurations is equal to the

later stamp. Because stamps from later configurations are assumed to represent newer

information, it is necessary for a replica of the new configuration to have all information

from the previous one.
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To enable clients to locate the map server replicas, information concerning the new

configuration is inserted into the Argus catalog. The catalog is a service that all guardians

can use to locate resources in the Argus system.

It is undesirable for the map service to shut down during reconfiguration. If the server

is reconfigured rarely, and if reconfiguration can be accomplished quickly, the temporary

disruption of service might be acceptable. However, if some replicas cannot be contacted

quickly, because of node crashes or network failures, reconfiguration could take too long.

A more sophisticated method of reconfiguration is discussed in (21. This method allows

replicas to be removed without disrupting service. When more general reconfigurations

occur, some lookups can be processed; other lookups, and all updates, are blocked until

reconfiguration is completed. Although this method could be adapted for our application,

implementation of a more involved reconfiguration scheme is beyond the scope of this thesis.
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Chapter 5

Implementation of the Map Service and Replicas

The map service has been designed to reduce the effects of two important sources of

overhead: communication and stable storage. Sending and receiving messages and writing

data to stable storage can take orders of magnitude more time than other operations, and

have the potential to dominate other costs. The server design attempts to minimize both

the information written to stable storage and the number and size of messages.

Another goal in the design of the server replicas is to allow as much concurrency as

possible. Certainly, several clients should be able to read data concurrently from a replica.

Ideally, it should even be possible for read operations to proceed at the same time as an

update at the same replica. In this case the state and timestamp returned by the read

operations would not reflect any of the changes made by the update.

5.1 Replica Implementation

Each replica of the server is implemented as an Argus guardian. This makes it possible to

take advantage of the Argus stable storage and recovery mechanisms. Even though replicas

are implemented as guardians, communication among replicas, or between replicas and the

map.seruice, does not take place through handler calls. Instead, low-level system messages

are used. This is done to eliminate the overhead associated with Argus handler calls (e.g.

piggybacking of aids and orphan information; two phase commit for the call's topaction).

In addition, if normal handler calls were used for this purpose, orphan detection would have
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to be performed for them. The orphan detection routines might find it necessary to call the

server again, resulting in an infinite loop.

The use of handler calls for communication with replicas can be avoided in our applica-

tion, because the required atomicity of operations can be achieved without them. Operations

within a replica either run to completion or have no effect. Replica operations are never

aborted by the map-service nor are map-service operations ever aborted. In addition, these

operations are never combined into larger atomic units.

Replica operations never have to be aborted by the map.service, because repeating any

operation twice at a replica has the same effect as performing it just once. Performing an

operation at several replicas instead of one also gives correct behavior. Therefore, if the

map.service does not receive a reply for a request within a reasonable time, a second call

can be made to the same replica, or a different one, without aborting the first call.

There is no need to use the Argus transaction mechanism to serialize replica operations.

Operations performed at a single replica are serialized by the replica itself, as explained later

in this chapter. There are no serial constraints on operations at different replicas, except

that a gossip messaage reflecting an update must not be sent until the sender has recorded

the update on stable storage. The sender of the gossip message can easily enforce this

constraint; it is considered a 'multiple replica" constraint only because gossip processing is

considered an operation of the recipient.

Similarly, map.service operations never need to be aborted. Clients never deliberately

abort map.seruice operations. If a client crashes before an update operation is completed,

there is no need to undo the operation; the information inserted into the service remains

valid. Note that some of our map-service operations are not serializable. If two guardians

perform insert or delete operations at the same time, the state returned by the map.sermice

for each of them could reflect the update made by the other. This can happen if the

timestamp supplied by the client is large enough to require queries to other replicas to

get a recent enough state, or if a replica's reply is lost and the update is retried, or if a
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background query is made before the update completes. There is nothing wrong with this

behavior, for our purposes.

In some applications other than orphan detection, it may be necessary for all map.service

operations to be atomic and combinable into larger atomic units. An implementation of

the server that allows operations to be combined into compound atomic actions, by making

use of handler calls for server operations, can be found in (2].

5.1.1 Components of the Replica State

The state of a map server replica consists of the following elements:

map a volatile copy of the map data, available for lookup operations; it does not reflect

any updates that are still in progress

current -timestamp the timestamp of the volatile map

stable map a copy of map, kept on stable storage; does not reflect the most recent map

updates; periodically, the volatile map is flushed to stable storage, to update this

stable copy.

changes a stable log of changes to the map; it consists of two components:

new-entries a list of map updates not yet added to the stable version of the complete

map. Together, the stable map and new.entries define the map version to be

restored upon recovery from a crash.

timestamp the timestamp of the state obtained by merging new.entries into the

stable map; i.e. the timesta~mp to be used after crash recovery.

deleted-entries a set of guardian ids for which the delete operation has been performed,

but which have not yet been garbage collected from the map. Each entry in this set

is of the form (name, time, stamp), where name is the uid this entry is for, time is
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the time when a client made the deletion request, and stamp is the replica timestamp

when the delete operation was performed. Time and stamp are used to determine

when deleted entries may safely be removed from the map.

replica.timestamps estimates of the timestamps of the other replicas; these estimates

are lower bounds, based on the messages received from each replica.

gossip-list a list of map entries to be gossiped to other replicas. Each gossip entry is of

the form (name, value, time, stamp), where (name, value) is a map entry, and time

and stamp indicate when that entry was added to the map.

read-synch dummy object used for synchronization

write-synch another dummy object for synchronization

status a stable object describing the current server coafiguration, the location of the other

servers, and indicating whether reconfiguration is in progress.

One goal in the design of the server was to minimize the use of stable storage, to avoid

unnecessary overhead. For this reason, several elements of the replica state are volatile.

These include the gossip list, the deleted entry set, and the estimates of other replicas'

timestamps. The above items can be recovered to a safe, although non-optimal, state when

the replica recovers from a crash.

When the list of estimated replica timestamps is reconstructed after a crash, each replica

can be assigned a zero timestamp. This may cause us to send each replica some gossip

entries it has already received, and may delay garbage collection. However, as soon as we

receive gossip from a replica, we can update our estimate of its timestamp appropriately,

so garbage collection should not be delayed for very long. An alternative solution is to ask

the other replicas to send us their timestamps immediately; if a replica does not respond to

our request, we can assign it a zero timestamp temporarily.
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The deleted entry table can be recr.,4 structed from the stable version of the map. An

entry is created for each guardian id mapped to a value of infinity. Our current time and

timestamp are used to construct each deleted entry. This ensures that entries are not

garbage collected too soon. Because there should normally be only a few deleted entries,

any delay in garbage collecting them should not be a problem.

Because the gossip list is not saved on stable storage, we cannot tell which map entries

are already known to other replicas. A new gossip list is constructed containing all entries

in the database, with time and stamp values equal to our current time and stamp. As a

result, our gossip messages include the entire map for some time after recovery. The list is

eventually garbage collected in the usual manner.

The decision not to make the gossip list stable was made because it seemed better to

reduce performance somewhat after a replica crash than to write more to stable storage

every time an update was made. However, for a sufficiently large database, gossiping all

the data after a crash would not be acceptable. In this case, the list of gossip entries could

be made stable. Only the list of guardian ids in the gossip list would have to be saved,

however. Appropriate values for each id could be obtained from the stable map; safe values

for the time and stamp of each entry could be calculated as described above.

5.1.2 Controlling Concurrency

Another goal in the design of the server replicas was to achieve as much concurrency as

possible. In order to prevent the server from becoming a bottleneck, we want to prevent

different operations at a replica from delaying each other. It seems particularly undesirable

for operations that only read data from the server to be delayed by update operations;

updates take longer to complete than reads do, because of the relatively long time needed

to write to stable storage. It would be convenient to allow lookup operations to return

immediately, with a version of the server state that does not reflect the updates in progress,

thereby avoiding the delay.
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In our presen6 Argus implementation this is not possible, becaue writing to stable stor-

age causes the entire guardian, not just the current process, to wait. The reason for this is

that each Argus guardian runs as a single process in the underlying UNIX1 system; concur-

rency at a guardian is achieved by creating multiple threads of control within this process,

each corresponding to a logical process of the Argus system. In our present implementa-

tion, writing to stable storage blocks the underlying UNIX process, and therefore the whole

guardian, until the write is completed. Because the server design is intended to be general,

not restricted to the present Argus implementation, and because our stable storage imple-

mentation may be changed in the future, this problem was ignored. All further discussion

in this paper will be based on the assumption that writing to stable storage will not block

the guardian.

In order to allow concurrent reads and writes, two copies of the current state and

timestamp are maintained. One copy is kept on stable storage; the other is volatile. Each

read operation returns a copy of the volatile state and timestamp. Updates change the

stable state and timestamp, wait for the change to be written to stable storage, and finally

update the volatile state. The server also maintains a list called changes, listing the last few

changes to the map. When the map is modified, only this list is written to stable storage,

not the whole database. Periodically, the stable copy of the whole map is updated to reflect

these changes, and the changes list is reset to be empty.

To synchronize access to the server state, two objects are used: an atomic object (named

readslynch) and a mutex (named write-synch). These objects are used solely for synchro-

nization; their values have no significance. Read..synch is used to control access to the

volatile copy of the data; processes needing to examine or modify the volatile state must

first acquire the appropriate lock on read.synch. Write.synch protects the stable data, and

ensures that map information is written to stable storage only in a consistent state.

The following rules are used to avoid conflicts among operations:
1UNIX is a trademark of AT&T Bell Laboratories
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1. Any operation modifyirg any part of the server state (or reading the changes

list), must seize the write.synch mutex before before changing anything (or read-

ing changes). The mutex must be held until all modifications have been made, and

until changes has been accessed for the last time.

2. Any operation modifying any part of the replica state other than changes must acquire

a write lock on rad.-synch, in addition to seizing the write.synch mutex. The lock on

read.synch must be acquired before the first change is made and must be held until

after the last change.

3. To access any part of the state, an operation must acquire a read lock on read-synch

before the first access and hol! it until after the last access, ezcept that an operation

does not need a read lock on read~synch while it has the write-.synch mutex seized.

4. If an operation seizes the write..synch mutex, it must seize it before acquiring any

other lock and hold it until after all other locks are released.

The first three of the above rules control concurrency in access to different components

of the replica state; the fourth rule prevents deadlocks that might occur if two operations

attempted to seize the same locks in a different order. The last clause of rule three allows

lookups to proceed while the changes list is being written to stable storage. These rules can

be suspended during recovery from a crash, when only the recovery process is active.

5.1.3 Implementing Replica Operations

Let us now examine the replica operations in detail. We present an "abstract imple-

mentation", ignoring some details of the Argus language.

The insert operation adds a map entry for a uid to the replica state. The state is

unchanged if the uid already has an entry with a larger value. The insert routine ignores

old requests, i.e. those for which the message delay is larger than the maximium allowed.

This operation is implemented as follows:
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insert = proc (name: uid, new-vaiue: int, sender: client, send-time: time)

if too.old(send-time) then return end % ignore old insert messages

% block other writers
seize writesych do

% don't change the state if we already have a larger value
% for name; if name has not been inserted yet, its value is -0o
if map~name] < new.value then

% update stable log of changes; flush log to stable storage

% reset log if necessary
if toolarge(changes.new.entries) then

flush.to.ss(map)
changes.new.entries : {}
end % if

changes.new.entries := changes.new.entries U {(name, new.value)}
changes.stamp := increment.timestamp(current.timestampmy-part)
flush-to-ss(changes)

% Now update the volatile data

enter topaction

% get a write lock to block readers from examlung the state
set..value(read-3ynch, dummy.value)

% update the volatile state and timestamp
map(name] := new-value
current-timestamp := changes.stamp

replica-timestamps(this.replica] := current.1imestamp

% add the change to the gossip list
gossip-list := gossip.list U {(name, new.value, send.time, current. .:imestamp)}

end % topaction
end % if

reply to.client(sender, map, current.timestamp)

5o



end % seize

end insert

The delete operation is essentially equivalent to an insert operation performed with a

value of oo. It is implemented the same as insert except that the deletion must be recorded

in the set of deleted entries. This is accomplished by executing the following immediately

after updating the volatile state, and before changing the gossip list:

4eleted.entries := deleted-entries U {(name, send-time, current -timestamp)}

The following code implements the refresh operation:

refresh = proc (sender: client)

enter topaction
% get a read lock for the volatile state
get _value(read.synch)

reply.to.client(sender, map, current.timestamp)
end % topaction

end refresh

Each server replica contains a daemon responsible for sending gossip messages to other

replicas. Every now and then, this process wakes up and sends each replica the list of

changes to the state. A change is not included the gossip message if we know that the

recipient has already learned about it, i.e. if our estimate of the recipient's timestamp is

greater than or equal to the timestamp associated with the change.

gossip = proc ()
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while true do
sleep(gossip.interval) % wait until it's time to send next message

seize write-synch do % block writers

for next.replica:Server 6 alL-replicas do
if ne_treplica 0 this.replica then

next.replica.gossip:SetOfGossipEntries {}
for e:Gossip-entry e gossiplist do

% don't send the entry if the replica already knows about it

if (e.timestamp : replica.timestamps[next-repUcal then

next.replica-gossip := next.repUca.gossip U {e}
end % if

end % for
end % if

send-to-replica(next-repica, next -replica-gossip, current timestamp)

end % for
end % seize

end % while

end gossip

When a replica receives a gossip ..lessage, it carries out the following steps. First,

it revises its estimate of the sender's timestamp, by merging the old estimate with the

timestamp of the gossip message. Next, if the message timestamp is less than the recipient's

stamp, the message contains no new information and is discarded. Otherwise, each gossip

entry is added to the stable copy of the map, and a new timestamp is calculated by merging

the incoming timestamp with the recipient's own stamp. After these changes have been

written stably, the volatile copy of the map and timestamp are updated, and the gossip

entries are added to the gossip log. The implementation of this operation is given below.

receive-gossip = proc (msg- Gossip.message)

% block other writers
seize write-synch do

% revise estimate of sender's timestamp
replica-timestamps(msg.sender] :=

merge-timestamps(replica-timestamps[msg.sender], msg.timestamp)
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if msg.timestamp : current-timestamp then

% update stable log of changes; flush results to stable storage

% reset log if necessary
if toolarge(changes.new.-entries) then

flush.to-sa(map)
changes.new-entries {}
end % if

% add the new map entries
for e:Log-entry E msg.new.entries do

if e.timestamp current .timestamp and changes.new.entries(e.name] < e.value then
changes.new.entries(e.name] := e.value
end % if

end % for

% change the timestamp
changes.stamp := merge(current-timestamp, msg.timesta.mp)

flush-to-ss(changes)

% now do the volatile state

enter topaction
% get write lock to block readers
set-value(read.synch, dummy-value)
% add each entry containing new information
for e:Log.entry E msg.new.entries do

if e.timestamp : current.timestamp and map(e.name] < e.value then
maple.name] := e.value

% if entry is for a deleted uid, then add it to the list of deleted entries
if e.value = oo then

deleted.entries := deleted-entries U {(e.name, e.time, e.timestamp)}
end % if

gossip-list := gossip-list U {e}
end % if

end % for
current -timestamp := changes.stamp
replica-timestamps(this.xepica] := current-timestamp
end % topaction
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end % if
end % seize

end receive.gossip

In order to garbage collect information from the state, a replica periodically calls fol-

lowing routine:

cleanup = proc ()

% block other writers
seize write-synch do

% first do gossip list; remove entries received by all replicas
for e:GossipEntry E gossip.ist do

if Vts E replica.timestamps, e.timestamp ts then
gossip.ist := gossip-list - {e}
end % if

end % for

% now remove deleted entries

purged:Bool := false
current-time:Time % system primitive
enter topaction

% get write lock on the volatile state; we're about to change it

set .value(read-synch, dummyovalue)

% remove an entry only if it's old enough and all other replicas know about it

for e:Deleted.,ntry E deleted.entries do
if old(e.time) and Vts E replica-timestamps, e.timestamp : ts then

remove.entry(changes.new.entries, e.name)
remove.entry(map, e.name)
deleted.entries := deleted-entries - {e}
end % if

end % for
end % topaction

% finally, flush modified map and changes list to stable storage
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flush.to.ss(map)
flush.to-ss(changes)
end % seize

end cleanup

When a replica recovers from a crash, it must reconstruct the volatile state appropriately

based on the stable data. The list of recent changes must be merged with the stable copy

of the map, to produce a volatile map reflecting all data known to the server. .'he volatile

timestamp is set equal to the stable timestamp. Some components of the replica state

(e.g. gossip list, list of other replicas' timestamps, deleted entry list) are not saved stably;

these are recovered to a safe, but not necessarily optimal state. After updating the state

and creating background processes for gossip, garbage collection and communication with

clients, the replica may begin performing normal operations. The recovery operations are

given below.

recover % recovery process

% make dummy objects for synchronization
read-synch
writesynch

% Recover map and timestamp; volatile map should reflect all updates
% in the changes list, so merge them in; take the opportunity to
% reset the changes list and flush the whole map to stable storage.

map := merge(map, changes.new.entries)
c-rrent-timestamp := changes.timestamp
flush-to.ss(map)
changes.new.entries {}
flush-to.ss(changes)

% we don't remember the other replicas timestamps;
% it is safe to pretend they're zero
for replica:Server E all-replicas do

replica.timestamps(replica] := make.zero-timestamp()
end % for
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replica.timestamps(this.replica] := current.timestamp

% recover deleted entries and gossip log; choose safe
% deletion times and timestamps for each entry
current.time := % system primitive
gossip-list := {}
deleted-entries := {)
for e:Map-entry E map.value do

gossiplist := gossip.list U {(e.name, e.value, current-time, current.timestamp)}
if e.value = oo then

deleted-entries := deleted-entries U {(e.name, currer line, current..imestamp)}
end % if

end % for

% fork processes for gossip, etc.

end % recover

It can be demonstrated that this implementation of server operations guarantees the

consistency of the replica state, and of data returned to the client. If a lookup operation

holds a read lock, writers will be excluded from modifying the volatile state, and a consistent

view of the data will be obtained. The use of write.synch ensures that only one write can

be in progress at a given time, so each writer will see a consistent state. To ensure the

consistency of stable data, a single object (i.e. changes) is used to hold the new.entries list

;vmd timestamp; these are written to stable storage in a single operation. The volatile map

is not updated until after the new map entry has been saved stably. This ensures that no

client will see information that is still volatile and could later be lost. Periodically, the

replica resets the changes list to be empty. Before this is done, all changes are first written

to the stable copy of the map, to ensure that no changes are lost in the event of a crash.

Operations cannot deadlock with each other. Once a read operation has acquired the

necessary read lock, it can always complete. Updates cannot deadlock with each other,

because only one can be in progress at a time.
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Update operations delay readers only for the time needed to modify the volatile map.

While an update is writing information to stable storage, it does not hold a write lock on

the volatile state, so readers are not delayed.

5.2 Implementation of the Front End

The implementation of the front end for the map service is fairly straightforward. As ex-

plained in Chapter 4, an abstract data type called map.service is maintained at each client;

the client obtains map information by calling the operations of this type. The map.service

data type maintains a queue of client requests and its own copy of the map and timestamp.

The map and stamp are cached locally for greater efficiency; when sufficiently recent in-

formation is available locally, calls to the server replicas can be avoided. Periodically, the

map-serice queries replicas in background mode to obtain a new version of the map, so

this information will be available the next time the client makes a request.

When the map.service's refresh operation is called, the timestamp supplied by the caller

is compared to the map-service's stamp. If the timestamp of the caller's request is less than

or equal to the cached stamp, then the local copy of the map and stamp are returned. Oth-

erwise, the new request is added to the request queue. When the insert or delete operation

is called, the request is added to the queue regardless of the value of the timestamp.

A separate process within the map.service handles the map requests, making the appro-

priate calls to the server replicas. When a response is received from a replica, this process

merges the incoming state and timestamp with the local copies. Next, the local timestamp

is compared with the timestamp of each client request. If any requests have a timestamp

less than or equal to the new stamp of the local map, the processes making the requests

are woken up, and allowed to return with the new information. If there remain unsatisfied

requests after a response is received from a replica, or if the replica to which a request is

addressed does not respond, another replica is tried.

In order for the above implementation to work correctly, it is necessary that the
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map.service be able to merge information received from a replica with information cached

locally. Specifically, the map-service relies on the following fact:

Va1 , 2, 3:state, S3 .tJ = metge(31.ts3,2 .t9) * e-3 = merge(,l, s2)

Although the map-service specifications do not guarantee this property to client applications

(to avoid constraining the implementation unnecessarily), the replica specifications must

provide such a guarantee to the map-service data type itself. Our map server replicas

preserve the above property, because of the way gossip messages are processed. When a

gossip message is received by a replica, the recipient's new timestamp is set equal to the

merge of the old and incoming stamps; the recipient does not increment its component of

the stamp.
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Chapter 6

Orphan Detection Using the Central Server

In this chapter, we will examine the implementation of our orphan detection method.

First, guardian creation and destruction, crash recovery, and handler call processing will be

considered as they relate to orphan detection. Next, we will discuss the implementation of

modules used to detect crash orphans and abort orphans. Finally, we will explain how to

destroy an orphan once it has been detected.

6.1 System Overview

Before discussing the implementation if our orphan detection algorithm in detail, it

is useful to describe briefly the structure .,i the Argus system. Only those portions of the

system related to our orphan detection implementation will be discused here. The structure

of this part of the system is illustrated in Figure 6.1. In this diagram, a plain rectangle

indicates a procedure, one with a double line at the top indicates an abstract data type,

and a box labelled with the letter "G" in one corner indicates a guardian. Arrows indicate

dependencies among modules. The figure reflects the changes to the system resulting from

use of the central server for orphan detection; previously, the system structure was similar,

except for the absence of our new modules.

At the highest level of the system that we will consider, there are two modules: sys.init

(for system initialization) and handlertype. Sys.init runs when a guardian or program is

first created, or when a guardian recovers from a crash. It calls many other modules to
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Figure 6.1: Argus Runtime System - Orphan Detection Modules
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initialize data and to recover information from stable storage. HandLertype is an abstract

data type used to implement handler calls. It performs the operations needed to send a

handler call, run the call at the remote guardian, and process the reply. A subordinate

module, rpc, waits for the reply to a handler call. Until a reply is received, rpc periodically

contacts the recipient of the handler call to verify that it has not crashed, has not been

destroyed, and that the call is still active. If the handler call is no longer active (e.g.

because it was destroyed as an orphan), or if the guardian making the handler call is unable

to communicate with the recipient, rpc reports the error to handlertype.

At the next level of the system is the ainfo (for action information) module. Ainfo is

used to create new actions, abort and commit them, and to add orphan information (as

well as additional information used later for two phase commit) to handler call and reply

messages. Ainfo is also responsible for reading and processing this information when a

guardian receives a handler call or reply. The 2phase module is called by ainfo when a

topaction commits; it is responsible for carrying out the two-phase commit protocol [1].

The third layer in our system consists of those modules directly responsible for perform-

ing orphan detection. These are the map, done, and gmap data types. Map maintains a list

of guardians and their crash counts, and is used to detect crash orphans. Done contains a

list of aborted actions, and is used for detecting abort orphans. The gmap module imple-

ments the generation map, which holds the generation counts of other guardians. Gmap is

used to determine when information can safely be removed from done;, it also shares the

responsiblity for detecting abort orphans. The map, done, and gmap modules correspond

to the data structures of the same names described in Chapter 3.

Below the main orphan detection modules are the map.service and gen.service data

types. Map-service is the front end for the central map service. It is used to inform the

service of the guardian's crash count, and to obtain new maps from the service. Similarly,

gen.service acts as a front end for the generation service; it is used to store the generation

count, and to obtain a new gmap. The map.service and gen..-service contact replicas of
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the map server and generation server, respectively, to store or retrieve the appropriate

information.

There are two other data structures maintained at each guardian that are relevant for

orphan detection: active and committed. Active is a list of all local root actions that have

not yet committed or aborted. (A local root is a non-nested topaction or a handler action,

i.e. the root of an action tree at this guardian.) Committed lists all local roots that have

committed, but not yet committed through the top. Many modules need to refer to the

list of active actions. Committed is used to hold information about local committed actions

until two phase commit can be performed for them; it is also used to identify and destroy

"unwanted committed subactions", as explained later in this chapter.

Finally, at the lowest level, are the aid and timestamp data types. Aid implements action

identifiers; timestamp implements the stamps associated with the map and generation map.

Outside of this layered structure is the recover module, used for stable storage and

crash recovery. Most of the other modules make use of recover to write information to

stable storage. During recovery, procedures within the recover module read the saved data,

and call operations of map, done, gmap, and other data types, to restore those objects to

appropriate states.

6.2 Guardian Creation, Destruction and Crash Recovery

When a guardian is created, a start up routine in the map module inserts the guardian's

gid into the map service, with a crash count of zero, and obtains a map and timestamp

from the service. This is accomplished by calling the map service's insert operation, with

the guardian's gid, a zero crash count, and zero timestamp as arguments. The map and

timestamp returned by the service are then used as the guardian's map and stamp. Similarly,

a gmap routine inserts e gid into the generation service, with a generation count of zero,

and obtains a copy of the generation map and generation timestamp. The done list is

initially empty.
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When a guardian recovers from a crash, the recover module uses the information saved

on stable storage to reconstruct a consistent guardian state. The crash count is read and

incremented, and the new crash count is saved. The previously saved generation count is

also obtained. The map and generation timestamps are recovered, and inserted into the

map and gmap modules, respectively. The list of done entries is read, and these entries

are inserted into done, using operations of the done module. The guardian's stable state is

read, and the stable objects are reconstructed.

After the recover routines have completed, the map startup routine is run. This proce-

dure obtains a valid map from the map service, by calling the service's insert operation, with

the guardian's gid, current crash count and current timestamp as arguments. The gmap

module then obtains a new generation map and timestamp from the generation service, in

the same manner. Once the stable state of the guardian has been reconstructed, and a valid

map, gmap and timestamps have been obtained, the guardian may resume normal activity.

When a guardian is destroyed, its crash count and generation count are set to infinity.

This is accomplished using the delete operations of the map.service and gen..er ice modules.

There are two different ways in which a guardian can be destroyed: it can destroy itself,

by executing the Argus terminate statement, or it can be killed by the guardian manager.

If a guardian executes & terminate statement, it calls the map and generation services, to

delete its own gid. If the guardian manager kills a guardian, it is responsible for notifying

the service.

In order to ensure that the map and generation services actually receive the information

about a destroyed guardian, a guardian that executes a terminate statement is not allowed

to disappear until the services' delete operations have completed. However, it is possible

for a guardian to crash while the delete operations are still running. In this case, the

guardian must recover from the crash, and then attempt to delete itself once more. For

this reason, before a guardian notifies the service of its impending destruction, it records

on stable storage the fact that it is trying to terminate itself. Upon recovery from a crash,
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the guardian checks to see if it was previously trying to destroy itself. If termination was

in progress at the time of the crash, the guardian does not accept any handier calls after

recovery; it simply tries to delete itself from the service once more.

The above deletion procedure wcrks correctly for guardians, but not for Argus prrams.

As explained in Section 2.1, prograrns are Argus modules that do not have stable storage and

are not resilient to crashes. If a program ever crashes, because of a node crash or software

failure, it is permanently destroyed, but it cannot recover to notify the map and generation

services. To ensure that destroyed programs are eventually deleted from the service, the

guardian manager could periodically send the service a list of currently active programs and

guardians at the manager's node; any map or gmap entry from the manager's node, but

not in the manager's list, would indicate a destroyed program that should be deleted from

the service. Implementation of this method would require that the guardian manager be

able to determine which programs are still running. For example, programs could contact

the manager at the time they were created; the manager could periodically check to see

if a program's process was still active. Alternatively, if the manager only performed this

function during recovery from a node crash, it could simply report that no programs were

active at its node, because all of them were destroyed by the crash.

It should be noted that the guardian manager was not actually altered as a part of this

thesis work. Changes to the manager were avoided in order to avoid interfering with any

other users of Argus. Because the manager is only involved when guardians are created

and destroyed, not while they are running normally, the decision not to re-implement the

manager should not significantly alter the performance results we obtained.

6.3 Handler Call Processing

When an action makes a handler call, the following steps are performed. First a new

action is created, with the current action as its parent. This new action is known as the call

action. Next, a call message is constructed and sent to the guardian whose handler is being
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invoked. The call message includes the gid of the recipient, the name of the handler, the

arguments to the call, and additional information used for action management, including

orphan detection. This information includes the aid of the sender, the sender's dmap (i.e. the

list of guardians the sender is dependent on, and their crash counts), the sending guardian's

map timestamp, generation timestamp, and the guardian's copy of done.

After the call message is sent, the sending action waits for the reply. If a reply is rot

received within a reasonable time (15 seconds), the rpc module tries to contact the recipient,
to verify that the handler call is still active. If the recipient cannot be contacted, then the

handler call is aborted, and an unavailable exception is signalled to the caller. If the recipient

can be contacted, but the call is not active there, then the call action is aborted and the call

is retried. Otherwise, the caller waits a longer period of time (1-4 minutes), and contacts

the recipient again if a reply has not been received.

When a guardian receives a call message, it reads the caller's aid, and creates a new

action to run the call. This new action is called the handler action, and is a child of the call

action. After the handler action is created, orphan detection information is read from the

call message. First, the caller's dmap is extracted. Next, the map timestamp, generation
timestamp and done entries are read, using operations in the map, gmap and done modules.

If necessary, the map and gnap routines obtain a new map or gmap, respectively, from the

map and generation services. The routines used to read the timestamps and done entries

also kill any local orphans they can detect. Next, the recipient determines whether the

calling action is an orphan. A map routine compares the entries in the caller's dmap with

the recipient's map values for the same guardians. If any guardian listed in the caller's

dmap has a larger crash count in the recipient's map, then the caller is a crash orphan. In

this case, a refu~al message is sent to the caller, and the handler action is aborted; otherwise

the handler call is allowed to run normally.

After orphan detection is performed, if the message is not refused, the arguments to

the call are extracted from the message and the call is run. When the call completes, the
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results of the call are returned to the caller, along with the replying guardian's map and

generation timesta.mps, and a list of its done entries. The handler action is then committed

or aborted, as appropriate.

When the calling action receives the reply message, it extracts orphan detection in-

formation from the reply. First, the replying action's dmap is read. Next, the replying

guardian's generation timestamp, done entries, and map timestamp are read and used to

destroy local orphans. Finally, the results of the call are read, the call action is committed,

and the results are returned.

It is possible for the call action itself to be detected as a orphan when the reply message is

received. For example, suppose the call action C has topaction ancestor A and intermediate

ancestor B. B could abort, and then A could commit. Alternatively, A itself might abort.

In either case, A's guardian might advance its generation count and notify the generation

service that A's generation has completed. When C receives the reply from its handler call,

it might need to contact the service to get a new gmap, because the reply message might

have a larger generation timestamp than the caller's guardian has. When the new gmnap is

received from the server, C will be detected as an orphan. Similarly, it could be determined

that C is a crash orphan, based on information obtained from the map service. In either

case the call must be aborted, and the caller must be destroyed.

It is also possible for the replying action to be an orphan even if the caller is not. For

example, the replying action may have become dependent on a guardian that subsequently

crashed; the caller may have learned of the crash from the map service. This condition is

detected by comparing the replying action's dmap with the calling guardian's map. In this

case, the reply is refused, the call action is aborted, and the call is retried.

If the call action receives a refusal message from the recipient guardian, then either the

handler action running at the recipient was destroyed as an orphan, or the call action itself

was rejected as an orphan. In either case, the call action is aborted. The done entries

and timestamps in the refusal message are then used to determine whether the caller is an
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orphan. If the caller is, in fact, an orphan, then it is destroyed; otherwise, the call is retried.

6.4 Dealing With Crash Orphans

The Argus system uses an abstract data type called map to detect and destroy crash

orphans. This data type provides operations to read map information from a message, write

map information into a message, return the map value (i.e. crash count) for a guardian,

return the current map timestamp, and merge an incoming map with the current map.

Also provided are a start up operation to obtain an initial map from the map service, an

operation that returns all of the entries in the map, and a routine to set the timestamp to

the previously saved value during recovery from a crash.

In the basic Argus implementation, map operations were used to read and write complete

maps to and from messages. In our optimized scheme, these same routines are used to read

and write timestamps, and to call the map service if necessary. In this way, both our use of

the service and our sending of timestamps in messages, instead of whole maps, are hidden

from higher level modules. This minimi es the changes needed for these modules and allows

any future optimizations of the orphan detection algorithm to be implemented more easily.

The representation of the map consists of three elements: the timestamp of the current

map, a list of map entries, and a flag indicating whether the map timestamp has changed

since the last time it was written to stable storage. The list of map entries is implemented

as an array, sorted by gid. Each entry in the list is of the form (gid, crash count) or

(gid, crash count, timestamp), where Sid is the id of some guardian, crash count is our

crash count value for that guardian, and timestamp is a stamp indicating when we received

the entry. Timestamp values are maintained only for deleted entries (i.e. entries with crash

counts of in.fluity, representing destroyed guardians), and are used for garbage collection, as

explained below.

In order to prevent map operations from seeing the representation in an inconsistent

state, some form of synchronization is necessary. In the map implementation, syuchroniza-
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tion is provided by critical sections, during which other threads within the guardian are

not permitted to run. This is also known as disabling interrupts, because execution of the

current thread cannot be interrupted to allow another thread to run. However, even if the

current thread is in a critical section, other threads may run, if the current thread suspends

its execution to wait for some event.

The implementation of many of the map operations is fairly straightforward. For exam-

pie, the lookup routine simply searches the map array to find the entry for a gid and then

returns its crash count value. The put procedure writes the current timestamp into a mes-

sage, by calling the put operation of the the timestamp data type. The startup procedure

is called when the guardian is first created and when it recovers from a crash. It obtains a

new map from the map service, by calling the service's insert operation. The arguments to

insert are the guardian's gid4 its crash count, and either a zero timestamp, if the guardian

has just been created, or the saved timestamp if the guardian is recovering from a crash.

The operations performed when map information is read from a message are more in.

volved, and will be discussed at greater length. The map data type provides a get procedure

to extract and process map information from an incoming message. When this routine is

called, it first reads the map timestamp contained in the message. Next, the incoming

timestamp is compared with the recipient's stamp. Unless the incoming stamp is less than

or equal to the guardian's own stamp, the map service's refresh operation is called, with

the incoming stamp as an argument. Once a map has been obtained from the service and

merged with the existing map, the get routine returns to its caller.

While the refieh operation is in progress, execution of the current thread is suspended,

and other threads are permitted to run; this allows the guardian to continue processing

other calls. The refresh request is processed by a separate thread within the map.aervice

data type; this thread restarts the requesting thread when the reftesh is completed.

Although the map and timestamp returned by refresh could be merged with the cur.

rent map and stamp within the get operation, in our implementation this is done by the
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map.service itself. Whenever the map.service receives a new map and timestamp from a

replica. it calls the merge-map operation of the map data type, with the new map and

timestamp as arguments. Merge.map destroys any orphans that can be detected using the

new map, and then updates the current map ,nd stamp.

Calling the merge.map procedure from within the map.service violates the abstraction

barrier between client and service. However, it eliminates some duplicated work. By merg-

ing new map versions directly into the client's map, the map.ervice can avoid caching its

own copy of the map. Instead of processing a new map twice (once to merge it when it is

received from a replica; a second time when the client uses it to kill orphans), we process

the map only once, using a single operation.

To make our discussion of the merge.map procedure clearer, we will give names to the

different map versions and timestamps handled by this routine. Let s, be the map version

received from a replica, and t, be its timestamp. The guardian's original map, before the

new map was received, will be named s. and its timestamp will be t.. The result of merging

these two maps will be a new map sn, with timestamp t,,. As in our discussion of the map

service, s(G) will refer to the value of G in a, and t(i] will be the ith component of t.

When merge.map is invoked, it first compares the guardian's current timestamp t. with

the received stamp tf. If t, : to, then merge-map returns immediately, without altering the

map and stamp. Otherwise, merge.map compares ., and s., to detect local orphans and

construct the new map s,. Because ., and a. are implemented as sorted arrays, it is easy to

scan their entries in order, searching for differences between them. After all orphans have

been killed, sa, is installed as the guardian's map.

If a guardian id G is found that is present in both maps, with a larger crash count in a,,

then any local actions dependent on that guardian are crash orphans, ar-', are destroyed.

An entry for G is then added to 9,, with the crash count spefied by 3,. If both maps

contain an entry for G, but a,.(G) _< ..(G), then G's entry from s. is included in s,,.
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If so does not contain an entry for G and a, does, then the entry from a, is added to

a.. No orphans can be present in this case, because either s.(G) = -co, in which case no

actions dependent on G ever ran here, or a,(G) = +00 (i.e. G has been garbage collected

from s.), in which case all such actions have already been destroyed. If G has been garbage

collected from so and s,(G) < o, then G's entry from a, must not be added to s.; we will

show later that this case cannot arise. Ifa,(G) = +o, it is possible that G has already been

garbage collected from so; however we have no way to determine whether this is true. In

this case, we add an entry for G to a,, with a value of +00; the entry is eventually garbage

collected again.

If G is present in a., but is missing from a,, there are two possibilities: either a, is an

old state that does not reflect the fact that G was inserted into the map service, in which

case a,.(G) = -00, or G has been deleted from the service and then garbage collected, so

8,(G) = +0o. If j,(G) = -oo, then G's entry from so is included in 8,. If s,(G) = +co,

then G has been destroyed, and any local actions dependent on this guardian are killed; in

this case an entry for G is not included in s. (i.e. G is garbage collected).

The correct value for a guardian id G that is missing from s, can be determined by

comparing timestamps. If t,- >_ to, then s,(G) > s(G). We know that so(G) > -oo,

because values of -co are never inserted into the map. Therefore, the new value for G must

be +oo. If t, and to are incomparable, then s,(G) must be -co; the reason for this is given

below. It is not possible that t, :_ to, because merge.map returns immediately in that case,

without examining the new map.

It can easily be shown that if t, and to are incomparable, and jo(G) is finite and G

is missing from a,, then j,(G) is -o, not +oo. The entry for a deleted gid G cannot

be garbage collected from the map of a replica R until R is sure that all other replicas

have learned about G's deletion. We will show that at this point R's timestamp wil be

greater than or equal to to, i.e. the stamps will be comparable. Because t, and to are

actually incomparable, however, G cannot have been gargage collected from a,. Since G is
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missing from s, but has not been garbage collected, The only remaining possibility is that

.,(G) = -oo.

Now let us show that if G has been garbage collected by B. then t, >_ t.. This is equivalent

to showing that Vj, tj] > toUJ, i.e. each component of t, is greater than or equal to the

corresponding component of t.. Let J be the replica that is allowed to increment the jth

component of a timestamp. Let X be the value of the jth component of 's timestamp

immediately after J learns about the deletion of G. B. cannot garbage collect G from its

state until it receives gossip from J, indicating that J has learned of the deletion. At this

point the jth component of RL's stamp is greater than or equal to X. A timestamp whose

jth component is lager than X can only be created after the deletion of G. Such a stamp

must either be created at J after the deletion, or derived from such a stamp by merging. In

either case, the stamp refers to a state in which G's value is +oo. Because the client's state

s. has a finite value for G, the jth component of its stamp t0 must be less than or equal to

X. Therefore, to[j] < X _ t,[j]; this is true for every j. Therefore, t, > to.

We will now examine the method by which merge.map garbage collects deleted entries

from the client's map. The procedure for garbage collecting entries must be considered

carefully. A deleted entry must not be garbage collected from the map if there is any

chance that we may later add a finite value for the same gid by mistake. We need to be

sure that if we ever receive a map from the server with a finite value for the deleted gid, its

timestamp will be less than ours. In that case, merge.map will not alter our map at all.

If we receive a map s,. from which a guardian id G has been garbage collected, its stamp

t, (and our stamp t,, after we merge t,. and t.) will be larger than the stamp of any state

with a finite value for G, as shown above. If we later receive a state with a finite value

for G. its stamp will be less than ours, and merge.map will discard it. Thus, we can safely

garbage collect the entry for G. However, there is one case in which we cannot tell whether

G has been garbage collected from a,. If a. contains a value of +0o for G that has not

been garbage collected, and G is missing from s,, and t,. is not comparable to t., we cannot
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tell whether s,(G) is +oo or -o. (Our earlier argument that .(G) = -oo when the

stamps are incomparable applies only when s.(G) is finite.) One solution to this problem

is simply to wait until we receive a state in which G is missing and for which t,. 2_ t,, and

then garbage collect G. However, because we communicate with different replicas, which

may have incomparable timestamps, and because our stamp increases when we receive a

new state, it could be a long time before we receive a stamp greater than our own. Thus,

garbage collection could be delayed indefinitely.

We solve this problem by maintaining a timestamp for each deleted entry. The time.

stamp to of an entry (G, o, t.) is the stamp of the first state we received that contained

an infinite value for G. When we receive a state s, from the server such that t, -_ t', we

know that .,.(G) = o. If G is missing from a, then it must have been garbage collected

by the server, and we can safely remove it from our own map. Sooner or later, because of

exchanges of gossip messages, a replica will be able to purge its entry for G and advance

its timestamp to be greater than or equal to tG, although not necessarily greater than our

current stamp t., which is also increasing. We should eventually receive from the server

some state with a timestamp greater than tc ; the entry for G can then be garbage collected

safely. If gossip messages are sent reasonably frequently, are delivered successfully most of

the time, we should not have to wait very long for this to happen.

It should be noted that our treatment of entries missing from s,. and our method of

garbage collecting deleted entries rely on the implementation of the server replicas. This

violates the abstraction between the client and the map service. However, if we think of

the merge.map routine as a part of the map.service, rather than part of the client, this

violation disappears. It seems reasonable for the map service front end to know about the

way in which replicas handle garbage collection of deleted entries.

When the merge.map routine discovers an orphan, that orphan is destroyed. This is

accomplished by setting a flag in the orphan's state information; the orphan's thread is

then allowed to run and destroy itself. Merge.map waits until the orphan is gone before

72



resuming execution.

While merge-map is waiting for an orphan to destroy itself, other threads may also

run, and new orphans may be created. Some of these new orphans may be dependent on

guardians that merge-map checked earlier. We cannot prevent new orphans from forming

while old ones are being destroyed, because we cannot add entries to the current map one

at a time. If entries were added one at a time, the partially constructed map would not

have a valid timestamp. If other threads within the guardian were allowed to run while

the new map was only partially constructed, they could see the map and timestamp in an

inconsistent state.

Because new orphans may be present, and may be dependent on guardians examined

earlier, merge.map must scan the new map as many times as necessary, until no further

orphans are found. If no orphans are present, the map only has to be scanned once.

If orphans exist, but no new orphans are created while we wait for the old ones to be

destroyed, the map will be scanned twice. Orphan detection shoi.ld usually be completed

relatively quickly, so new orphans should not normally be present. Eventually (usually the

first or second time), we should find no orphans; however, there is no strict upper bound

on the time required. Such an upper bound could be imposed by prohibiting new handler

calls from starting while orphan detection from a previous call was in progress. We do not

believe that many new orphans should form in the short time normally needed for orphan

detection; delaying new calls during this time seems unnecessary.

After all orphans have been killed and . has been constructed, j,. is installed as the

guardian's map. The timestamps t. and t are merged together to obtain the new timestamp

t, which is then installed as the current stamp. A flag is set in the map representation,

indicating that the map timestamp has changed. The next time the guardian performs

two.phase commit, the recover module will save the new timestamp on stable storage, and

reset this flag.

One question that has been overlooked so far is the actual method for constructing j,
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during the initial comparison of s, and a,.. One possibilty is to implement a,. as an arry

containing the elements of the new map; each time we discovered an entry that belongs

in s,, we would add it to the array. However, it is more efficient to construct a list As of

differences between s. and s. rather than constructing s. itself. Each entry in this list is

either a new.gid entry, a changed.value entry or a garbage.collect entry. While comparing

., and s., if we find a new gid G that should be added to the map, a new.gid entry for G

is added to As. This entry contains G's gid and crash count. When a gid G is found that

is present in a. and that should have a new crash count in s, a changed. vue entry for G

is added to As. This entry contains G's gid, its new crash count, and the array index at

which G's entry is located in the representation of a. If G has the same value in . and

j. then no entry for it is added. If G should be garbage collected from the map, then a

garbage-collect entry containing its gid is added to As.

After the initial comparison of . and s., and after any further passes to kill orphans, if

necessary, merge-map uses As to construct s,, from so. If there are no differences between

so and a,, (i.e. ,.s is empty), then the map is not modified. If As contains only changed

value entries, then the corresponding entries in a. are modified to have the appropriate new

values; this can be done quickly because each entry in As contains the array index of the

.responding entry in a.. If new gids were added or old gids were garbage collected, then

a second pass is performed to merge As with a.. This can be done in linear time, because

As is already sorted by gid. No other threads are allowed to run while the map is being

modified; this prevents the other threads from seeing an inconsistent map and stamp.

Our method for constructing the new map minimi es the work required when there are

no changes to s., or when the crash counts of gids have changed but no gids have been

added or garbage collected. We believe that the latter will be the most common case. We

have found that this implementation allows merge-map to run in half the time required for

the alternative implementation in which the complete s, is constructed and then installed.

While comparing maps and destroying orphans, the merge.map routine constructs a
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list of local roots of the orphans that have been found. Only local roots that are handler

actions are included in the list; topaction local roots are omitted. After the maps and

timestamps have been merged, refusal messages are sent to the guardians from which the

calls were made, to allow the guardians to abort the calls. We do not try hard to deliver

these messages; as explained above, the caller win eventually discover that the call is no

longer active and take appropriate action.

6.5 Abort Orphans

Two abstract date types, done and gmap, are used to deal with abort orphans. Done

holds the list of aborted actions this guardian knows about; gmap stores the generation

map.

6.5.1 Implementation of Done

The done module provides operations to add a new entry to done, determine whether

an action is an abort orphan, write done into a message, read done entries from a message,

and kill abort orphans. There are also operations to yield all entries of done, or those not

yet saved on stable storage, insert entries recovered from stable storage after a crash, and

a routine to delete old entries based on information in the generation map.

The representation of done consists of a list of entries, and a counter indicating the

number of entries not yet saved on stable storage. Each entry consists of an aid for an

aborted action and a flag indicating whether that entry has been saved. The list of entries

is implemented using an array, sorted by aid. Duplicate entries axe never inserted into the

list. Whenever an aid is inserted, the aids of its descendants, if any, are removed, because

they are redundant.

The aid data type provides a "less than" operation which makes this sorted representa-

tion possible. It defines a total order on aids, such that the id of each action is less than
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the aids of its descendants. In addition, every action B not descended from an action A is

either less than A or greater than all of A's descendants.

We use critical sections to synchronize access to the done representation, just as we

did for the map. Other threads within the guardian are not allowed to run while the

representation is being scanned or modified. However, when an orphan is found, its thread

is allowed to run so it can destroy itself; it is possible for other threads to run at this time

as well.

The put operation of the done data type adds the aids in done to a message. The aids

are added in ascending order, to facilitate merging of incoming and existing dones when a

message is received.

The orphan operation is used to determine whether an action A is an abort orphan.

This operation takes the action's aid as an argument, and returns a boolean value indicating

whether it is an orphan. As mentioned in Chapter 3, we define the origin of an action as

the guardian at which the action's non-nested topaction ancestor was created. The orphan

routine first compares the action A's generation number with the generation count of its

origin; the origin's generation count is obtained from the gmap module. If A's generation

number is lower than the generation count of its origin, then A must be an orphan, because

all top-level actions of that generation have completed. Otherwise, the list of done entries

is searched, to determine whether it contains an ancestor of A. If so, A is an abort orphan;

otherwise, A is not.

An update operation is provided to add the aid of an aborted action A to done. This

routine also kills any local descendents of A, because these descendants are now orphans.

It is important that the entry for A is not added to done until all of A's descendants have

been destroyed. Otherwise, if the guardian received a handler call from an action that was

already aware of the abort, the call would be allowed to run; the guardian would see that

A's id was already in done and assume that there were no active orphans. The orphans and

the new call could then interfere with each other. For example, the new call could modify

76



an object for which A previously held a lock; the orphans would assume that A still held

the lock, and could behave incorrectly when they observed the modifications.

When the update procedure is invoked, it first compares the generation number of A

with the generation count of A's origin, as listed in gmap. If A's generation is smaller, then

A's descendants can be detected as orphans using thf >.formation in gnap, so there is no

need to add A to done. If A does not belong to an old generation, the list of done entries

is searched to determine whether an ancestor of A is already in done. If A has an ancestor

in done, then A is not added, because its descendants can already be detected as orphans.

If it is necessary to add A to done, then any local actions descended from A are destroyed

as orphans. Next, A is added to the list of entries, and any entries for descendants of A are

deleted.

The sorted array representation of done makes it easier to find the ancestors and de.

scendants of A. To find an ancestor of A, we search for the largest aid that is smaller than

A; this is the only entry that can be one of A's ancestors. This search also leads us to the

array position P into which A should be inserted, if no ancestor is present. Any done entries

for actions descended from A will occupy consecutive locations in the array, beginning at

postion P. These properties are ensured by the specification of the "less than" operation

on aids. For any two actions B and C, either C is less than B, a descendant of B, or greater

than all of B's descendants; these possiblities are mutually exclusive. If an aid A has an

ancestor B in done, then any aid greater than B and less than A must be a descendant

of B, and cannot be listed in done. Therefore, B must be the largest aid in done that is

smaller than A. All actions not descended from A are either smaller than A or larger than

A's descendants; therefore A's descendants have the smallest aids that are larger than A.

As mentioned in our discussion of the map, orphans are not destroyed directly. Instead

a flag is set in the orphan's state information; the orphan is then allowed to destroy itself.

If the update routine finds any orphans and waits for them to be destroyed, it is possible for

the done array to be altered or for new orphans to be created. Therefore, after destroying
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the first set of orphans, we search the done array again, find the position into which to

insert A, and check for ancestors and orphans. Once we determine that no orphans are

present, a done entry for A is added, and any entries for descendants of A are deleted.

While searching for and destroying orphans, the update routine keeps track of any han-

dler actions that have been destroyed. After all orphans have been killed and done has been

updated, a process is forked to send refusal messages to the callers of any handler actions

that were destroyed as orphans.

The done data type also provides a get operation, which performs the work needed to

extract done information from a message, merge it into our own done and kill any local

abort orphans. First, this routine calls the gmap module's get operation, to extract the

generation timestamp from the message and update the generation map; the gmap module

also kills any orphans it can find. Next, the aids in the incoming done are read. As each

aid A is read, get compares its generation number with the generation count of its origin,

as listed in gmap. If A's generation number is smaller, then its descendants can already be

detected as orphans using gmap, and any such orphans have already been destroyed. In this

case, A is not added to done. Otherwise, all descendants of A are destroyed as orphans, A

is added to done, and any entries for its aborted descendants are removed from done. The

procedure followed in this case is similar to the update operation. Finally, for each handler

action destroyed as an orphan, a refusal message is sent to the caller.

It is easy to find the position into which to insert each new aid, to keep the done array

sorted. Because both the old and incoming done are sorted, we can scan the old done to find

the place to insert one new aid; the search for the place to add the next aid cai, start at this

position, rather than at the beginning of the array. As in the case of update, however, we

must start our search over from the beginning of the array if we had to wait while orphans

were destroyed.

The done module includes a timer procedure to delete old entries from the done list. This

procedure searches the list for aids whose generation numbers are iower then the generation
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counts of their origins. Each such action is removed from done. However, some of these

entries may already have been saved on stable storage. Periodically, the stable storage log

is compacted by the recover module; at this time the deleted entries are removed from the

stable version of done.

During crash recovery, gmap is used to eliminate any old aids that may be present in

the stable copy of done. When the guardian recovers from a crash, the generation number

of each aid in done is compared with the gmap value of its origin; aids with old generations

are not be added to the volatile done. The entries for these aids are purged from stable

storage the next time compaction is performed.

In our implementation, the timer routine is called by the gmap module, when a new

generation map is received from the generation service. This seems like the best time to

remove deleted entries; it keeps done as small as possible, and prevents us from wasting

time trying to garbage collect done when the gmap has not changed. Alternatively, done

could check the generation timestamp periodically (or after each call to gmap), and call the

timer if the generation stamp has changed.

6.5.2 Implementation of the Generation Map

The generation map is implemented by the gmap data type. This data type provides

operations to read the generation timestamp from a message, write the timestamp into

a message, return the generation count of a guardian, return the current generation time-

stamp, and merge a gmap from the generation service with the current generation map. The

implementation of gmap is very similar to that of map. The gmap representation includes

an array of entries, sorted by gid, the current timestamp, and a flag indicating whether the

current stamp has been saved to stable storage. Generation maps are merged and orphans

are destroyed in essentially the same manner as for map. Gmap recognizes an action as

an orphan if the action's generation number is lower than the new generation count for its

origin, as listed in the new gmap obtained from the service.
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One question that arises is how often to advance the generation counter. Advancing

the counter more frequently allows finer control over how much information accumulates

in done. The only cost of advancing the generation count is the time needed to write the

new count to stable storage. One solution is to advance the counter each time a new (non.

nested) topaction is created, but to save this counter only every Nth generation. Upon

recovery from a, crash, the guardian sets its generation counter to the next larger multiple

of N. In our implementation, the counter is advanced after each topaction is created, but

saved after every 256 topactions.

If a guardian remains in existence long enough, its generation count may eventually

wrap around, producing smaller (i.e. negative) generations for later actions. Our algorithm

will not work correctly if generation wrap occurs; therefore the counter must be made large

enough, or the rate of generation advancement small enough, that wrap will not occur.

A process within the gmap implementation is responsible for notifying the generation

service of generation changes. Periodically, this process examines the list of active actions

originating at this guardian, to determine the earliest generation ,n to which any of them be-

longs. All topactios from earlier generations must have completed (committed or aborted),

so the generation service is notified of this fact, i.e. the guardian's gid is inserted into the

service, with a value of n. If the guardian's current gmap value is already equal to n, then

there is no need to notify the server.

6.6 Implementing Action Identifiers

Our implementation of action identifiers is essentially the same as in the basic Argus

implementation, except for the addition of the generation number to the aid representation.

Action identifiers are implemented as sequences of integers. Each aid's representation is of

the form (nested, generation, pairs), where nested is the number of nested topactions that

are ancestors of this action, gen is the number of the generation in which the action's non-

nested topaction ancestor was created, and pairs is a sequence of pairs of integers identifying
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this specific action. A non-nested topaction has only one pair in its aid. A child action's id

is derived from its parent's by adding an additional pair to the sequence. This makes easy

to tell whether one action is an ancestor of another. The first integer in the pair is the gid of

the guardian at which the action was created; the second is a sequence number identifying

the specific action. The ainfo module keeps track of the number of children each action

has, and supplies the correct sequence number to the aid creation routine when a new aid

is needed. The negative of the gid is used instead of the gid if the action is a topaction. It

is necessary to indicate nested topactions in some way, in order to recognize that two-phase

commit should be performed for them.

The aid data type provides operations to create aids for topactions, children, concurrent

siblings and handler actions, determine whether a given aid is the id for a topaction, return

the non-nested topaction ancestor for an aid, test whether one action is an ancestor of

another, and to read aids from and write them to messages. Also provided is the "less

than" operation described above. The implemenation of most of these operations is fairly

straightforward.

One question that arises is how to implement the "less than" operation. This routine

defines a total order on aids such that ancestors' ids are less than their descendants', and

each action not descended from an action A will have an aid less than A's or greater than

the aids of A's descendants. The desired properties can be obtained by comparing the

elements of the sequence of pairs contained in each aid. When aids A and B are compared,

the first pair in A's sequence is compared with first one in B's sequence; if they are the

same, the second pairs in the sequences are compared, and so forth, until a difference is

found. At this point, the aid whose pair has the smaller gid is considered smaller; if the

gids are equal, the aid whose pair has the smaller sequence number is smaller. If the aids

are of unequal length, and no differences are found, then the shorter id is an ancestor of the

longer one, and is therefore considered "less than" the longer id. If an action B is descended

from A, its aid will differ from A's beginning at position n + 1, where n is the length of A's

id. Every action not descended from A will differ from A at an earlier position, and will
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therefore be either less than A or greater than all of A's descendants.

6.7 How to Abort an Orphan

Normally, aborting an orphan is fairly simple. First, a flag in the orphan's state infor-

mation is set, indicating that someone is trying to abort it. If the orphan's thread is blocked

waiting for some event, the thread is made runnable. When the thread wakes up, it checks

whether anyone is trying to abort it. If the thread discovers that it is being aborted, it

proceeds to destroy itself as follows. First, all local descendants of the orphan are aborted.

If any of these descendants are call actions, the aids of their handler actions are added to

done. The update operation of the done module is used to accomplish this. Next, any locks

the orphan holds for atomic objects are broken, its versions of atomic objects are discarded,

and the previous versions are restored.

There are three complications that can arise when an orphan is aborted. First, the

orphan may hold mutexes for some objects. Because mutexes are commonly used to protect

an object temporarily, while it is in an inconsistent state, destroying an action while it holds

a mutex may leave these objects in an inconsistent state. Therefore, if an action holds a

mutex, it does not destroy itself when it wakes up, even if someone is trying to abort it.

Instead, it keeps running normally until its last mutex is released; it then proceeds to abort

itself. It is possible for an action to run indefinitely without releasing all of its mutexes; if

this happens, the only way to abort the action is to crash the guardian where it is running.

It should be noted that, when an action receives a refual message in reply to a handler

call, because it has been detected as an orphan by the recipient of the call, it normally

destroys itself. However, if the action holds a mutex, it cannot destroy itself; nor can it

continue running until the mutex is released, because it has not received a normal reply to

the handler call. In this case, the handler call signals unavailable, to allow the action to

keep running, and eventually release its mutex and be destroyed.

A second problem occurs when the action being aborted is not a local root. In this case,
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the action's parent expects it to satisfy some specification; if the action is destroyed as an

orphan, at some arbitrary point, it may fail to meet its specification. Because non-atomic

data and global va riables may be shared between the action and its parent, these data may

be left in an inconsistent state when the action is destroyed. In this case, the parent is

said to be stranded. In order to avoid this problem, whenever an action is destroyed as an

orphan, its local root is also aborted.

The third problem concerns orphans that are non-nested topactions, or whose local roots

are non-nested topactions. If the orphan is aborted, its local root is aborted too. However,

the local root topaction is a part of some thread which expects it to meet a specification.

Aborting the root would leave the thread stranded. In this case, we must wait for the orphan

to terminate on its own. If the orphan does not terminate within a reasonable time, it may

be necessary to destroy it by crashing the guardian.

Related to the topic of destroying orphans is the issue of unwanted committed subac-

tions. These are committed local roots which have not yet committed through the top,

and which are discovered to have aborted ancestors or to depend on a guardian which has

crashed. Technically, these actions are not considered orphans, because they are no longer

active. However, because such actions occupy space, may hold locks, and can never succeed

in committing through the top, it is desirable to destroy them.

Unwanted committed subactions can be destroyed when a message is received containing

a piggybacked done, or when a new map or generation map is received from the map or

generation services. A committed local root can be destroyed if it has an ancestor in done,

has a generation number smaller then the generation count of its origin, as listed in gmap,

or if a guardian in its dlist has crashed, as indicated by the information in map. The

committed data type, which holds the list of committed actions, provides operations to

destroy all committed local roots that are descended from . given action, or depend on a

given guardian. or that belong to old generations. In each case, the action is removed from

the committed list, its locks are broken and its versions of atomic objects are discarded.
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Committed local roots cannot hold mutexes, so there is no need to be concerned with that

case.

6.8 Generation Extension

Our scheme for using the generation map to determine when information can be removed

from done may perform poorly if some actions take a long time to complete. Until all actions

of a given generation have completed, neither that generation nor any subsequent one can

be inserted into the generation service. Guardians must retain done entries from that

generation, and all subsequent ones, until the actions terminate and the generation count

in g nap is advanced. Therefore, if a generation contains even one long action, garbage

collection of done entries from that generation, and all subsequent ones, may be delayed

substantially. One solution to this problem is to increase the generation numbers of old

actions, if necessary, to allow the generation count to be advanced. Once the generation

numbers of all actions from old generations have been advanced, a larger generation count

can be inserted into the service. The guardian's gmap value can be increased, and garbage

collection of done entries becomes possible. We have developed a method for advancing

generation numbers of actions, as discussed below; however this scheme has not yet been

implemented.

Our method of advancing generation numbers is based on the deadline extension al-

gorithm discussed in [12] and [141. By analogy with extension of deadlines, we call our

scheme generution extension. When generation extension is used, we no longer (physically)

include the generation number of an action within its aid. Instead, each guardian maintains

a generation table listing active actions and their generation numbers. Committed actions

that have not yet committed through the top are also included. Only local root actions

need to be included in this table; the generation number of any other action is the same as

the generation of its local root ancestor. An entry in done for an aid A also includes A's

generation number as of the time A was inserted into done.
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The existence of the generation table could be hidden from other parts of the system,

by making the table a part of the aid data type implementation. In this case, aids could be

manipulated using the same operations as before; however, the getgeneration operation on

aids would now perform a table lookup, instead of fetching a generation number ccntained

physically within the aid.

A generation table entry has the form (aid, generation, extension-status). Aid is the

id for this action; generation is its generation number. During generation extension, the

extension status for an action A consists of an array containing entries for A's active de-

scendants. This array contains one entry for each active handler call whose call action C is

a "purely local" descendant of A (i.e. there are no other calls "between" A and C). Each

of these entries is of the form (id, acked, time), where id is the aid of the handler action

for the call, acked is a flag indicating whether the target guardian for this call has finished

extending the call's generation number, and time is the time at which we will send a new

extension message if a reply has not yet been received. When generation extension is not

in progress for A, its extension status is set to the special value not-eztending.

Two rules must be observed to ensure the correctness of generation extension. First, the

generation of a child must never be greater than the generation of its parent. This ensures

that, if the parent aborts, the child can be detected as an abort orphan after the parent's

done entry has been purged, using the information in gmap. Second, the generation service

must not be notified that a generation has completed until extension has been completed

successfully for all top level actions of that generation and all previous generations, and

for all of their non-orphan descendants. This prevents these actions from being mistakenly

destroyed as orphans.

As before, the gmap module periodically checks to see which of the guardian's genera.

tions have active actions. If the first n - 1 generations have completed, then the guardian's

gid is inserted into the generation service, with a value of n. When the gmap module checks

to see whether any old generations have completed, it may discover that some actions from
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very old generations are present. In this case, the guardian may decide to advance the gen-

eration numbers of these actions, so that a larger generation count can be inserted into the

generation service. If the guardian decides to advance its gmap value to n, then generation

extension is started for each active top-level action that originated at the guardian and has

a generation number that is less than n.

To extend the generation of an action A, the guardian first increases the A's generation

number, as listed in the generation table. This new generation number is sent along with

the aid of A in any message in which the aid is included. Any purely local descendants of A

have their generation numbers increased automatically, because their generations are taken

from the table. Next, A's purely local call action descendants are identified, and added

to A's table entry. Generation extension messages of the form advance.generation(aid,

new.generation) are sent to the descendants' guardians. In the extension message, aid is the

identifier of the descendant for which the message is being sent, and new.generation is A's

new generation number. After all of the messages have been sent, the sender waits to receive

acknowledgements for them. When an acknowledgement is received, the acked flag for the

corresponding descendant is set. If a message is not acknowledged within a reasonable time,

a new extension message is sent. When generation extension has been performed for all of

the active descendants of A, the status entry for A is set to not.eztending. Once extension

has been completed for all actions of a given generation, and for all actions of previous

generations, the generation service is notified that these generations have completed. If an

action aborts, commits or is destroyed as an orphan, it is removed from the extension table,

and no further attempt is made to extend its generation. If a handler call aborts, the call

action is removed from the caller's extension table entry.

When a guardian receives a generation extension message for an action D, it determines

whether D is active, committed through its local root, or neither. In this last case, either

the action aborted or it never ran at this guardian. If the action is aborted, any active

descendants it may have must be orphans, whose generations we do not want to increase. If

the action never ran, it has no descendants to perform extension for. Therefore, if the action
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is not active or committed, an acknowledgement of the form extended(aid, newvgeneration)

can immediately be sent to the guardian from which the extension message was received,

to indicate that generation extension for D has been completed. If D is still active, then

D's guardian follows a procedure similar to that used for the topaction A. D's purely

local call action descendants are identified, and extension records for them are added to

D's generation table entry. Generation extension messages are sent to each descendant's

guardian, replies are waited for, and extension messages are sent again if necessary. When

all replies have been received, an eztended(aid, new-generation) message is sent back to

the guardian of D's parent, i.e. the guardian from which the extension message for D

was received. If extension is in progress for an action and a duplicate extension message

(i.e. one with the same generation) is received, the duplicate is ignored. If extension has

been completed already, then an an acknowledgement is sent back immediately. Extension

messages containing generations less than an action's current generation are ignored as being

too old; the topaction's guardian has already requested extension to a later generation,

so the request cannot be current. Similarly, the generation number in acknowledgement

messages allows a guardian to ignore old replies.

One issue that must be considered is whether to extend the generations of committed

handler actions. Extending generations for these actions means that more extension mes-

sages have to be sent. It is not strictly necessary to extend the generations of committed

actions; however, if their generations are not extended, then the generation map can no

longer be used to destroy unwanted committed subactions. Since these actions are not

active, there is no danger of their seeing inconsistent data, and they need not be destroyed

promptly. If these actions hold locks, they will be destroyed when querying is conducted on

behalf of other actions seeking to obtain the locks; they may also be destroyed when two

phase commit is performed for their nearest topaction ancestor.

The above generation extension scheme should allow extension to be completed fairly

quickly, provided that no guardians involved are crashed or inaccessible, and provided that

the chain of handler calls is not too deep. Two optimizations can be made to improve the
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performance of this algorithm. First, if several extension requests are being made to the

same guardian at the same time (for different actions or multiple calls of the same action),

they can be combined into a single message, reducing message overhead. Second, if the call

chain is very long due to recursive handler calls, an algorithm similar to that given in (14]

can be used to "short circuit" the recursion, allowing extension messges to be passed around

the recursion loop just twice, regardless of the recursion depth. In (141, it is argued that

recursion is the most likely cause of very long call chains; if this is true, then this approach

seems promising.

The idea behind short circuiting is to extend the generations of all of the local descen-

dants of a topaction T when an extension message is received. During the first pass around

a recursive loop, a done tag for each descendant of T is set equal to the new generation

number, but the generation number itself is not changed. If any of these actions aborts be-

fore extension is completed, the done tag is used in its done entry, instead of the generation

number. During the second pass around the loop, the generation numbers themselves are

increased. Each extension message includes the sequence of guardians that have propagated

it; this makes it possible to determine when the message has travelled completely around a

recursive loop. The algorithm insures that every action's done entry is tagged with a value

at least as large as thie generation number of the action's descendants. As a result, the

done entry will not be removed from done until the action's descendants can be detected

as orphans using gmap. Each extension mesage also includes a list of aborted descendants

of the topaction, to prevent the generation numbers of orphans from being increased. For

a more detailed description of short circuiting, the reader is referred to (14].
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Chapter 7

Performance of the Orphan Detection Algorithm

In this chapter we examine the performance of our orphan detection algorithm. To

provide a basis for evaluation, we compare the central server based algorithm described

in this thesis with the deadlining scheme presented in (12, 141. First, we briefly describe

the deadlining optimization. Next, we examine the time each method requires to perform

individual operations related to orphan detection. Finally, the behavior of the system as

a whole is considered. The performance results presented for the deadlining method were

obtained from (121.

7.1 Deadlining Optimization for Orphan Detection

An alternative method of optimizing the Argus orphan detection algorithm has been

proposed by Edward Walker (141 and implemented by Thu Nguyen (121. Thi- m!ethod does

not make use of a central server to hold orphan information. Instead, the full map and done

are sent in each message between guardians, but map and done entries are deleted when

they are no longer needed.

To allow done entries to be deleted, each action is assigned a done deadline at the time

it is created. This deadline specifies a time at which the action will be destroyed if has not

yet completed. When a subaction is created, it is assigned the same deadline as its parent.

Because actions are destroyed when their deadlines expire, done entries for actions with

expired deadlines can safely be discarded; any actions detectable as orphans using these
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entries have already been destroyed. To allow these entries to be identified, each aid in

done is tagged with the done deadline of the action to which it refers. When the current

time at a guardian exceeds the time specified by this tag, plus the maximum clock skew,

the entry may safely be deleted.

A similar scheme is used to delete old entries from map. Each action is assigned a

map deadline when it is created. For a non-nested topaction, this deadline is equal to

the current time plus a map deadline period, which is uniform for all guardians. Each

subaction is assigned the same deadline as its parent. Actions are destroyed if their map

deadlines expire. When a guardian recovers from a crash and adds its new crash count to

its map, the map entry is tagged with a time value equal to the current time plus the map

deadline period. Clearly, if any action became an orphan because of the crash, its non-

nested topaction ancestor must have been created before the crash; therefore, the action

will have a map deadline smaller than the tag of the map entry for the crash. When the

current time at a guardian exceeds the tag value for a map entry, plus the maximum clock

skew, the deadlines of any actions detectable as orphans using that entry must have expired,

so these actions must have been destroyed. Therefore, the map entry may safely be deleted.

Walker (141 describes a protocol for extending the deadlines of actions, so that long

actions can run to completion. However, because an action's deadline may expire before

extension has completed, it is possible that some non-orphan actions will be destroyed

by the algorithm. A discussion of the implementation and performance of the deadlining

optimization for Argus orphan detection can be found in [12].

7.2 Basic Argus Operations

The Argus system currently runs on a group of MicroVAX-IHs, MicroVAX-Ills and VAX-

Station 2000s, running Berkeley UNIX (BSD 4.3 Version). These machines are connected

by a 10 megabit Ethernet.

'Micro-VAX and VAX-Station are registered trademarks of Digital Equipment Corporation
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To place our performance measurements in context, we first give the time needed to

perform a few basic Argus operations in the absence of orphan detection. These measure-

ments were taken with an empty map and done, and orphan detection was not performed.

These times were taken from (7] and (12]. All times were measured on MicroVAX-His.

According to [12], the time needed to send a message to a guardian and receive a reply

is 13.5 milliseconds. This represents the time needed to send a null low-level message, and

receive a null reply. Handler calls take longer to execute, even in the absence of orphan

detection, because of the additional information that must be transmitted in each call, and

the extra processing that must be performed. A handler call that takes no arguments,

does no work, and has no return value, can be executed in 18 msec. The time needed to

execute a null topaction varies, depending on whether the topaction needs to write modified

objects to stable storage. According to [7], a topaction that commits immediately, without

making handler calls or acquiring locks can be executed in 0.63 msec. If the topaction

acquires a read lock for some local object and then commits, 0.84 msec is required; if a

write lock is acquired, then 17.7 msec are needed, because of the time required to write the

modified object to stable storage. Actions that make handler calls to other guardians take

considerably longer to run. A topaction that makes one null handler call before committing

needs 36.5 msec to execute. If the handler modifies an object at the remote guardian. then

82 msec are required. Additional measurements of the performance of Argus can be found

in [7].

7.3 Cost of Orphan Detection - Individual Operations

There are several costs associated with orphan detection that need to be considered.

First, there is the cost of transmitting orphan detection information in messages. In our

algorithm, this includes the cost of piggybacking done and the timestamps for map and

gmap. Because timestamps are small, the main concern is the cost of transmitting a large

done. Next, there is the cost of processing done when a message is received. We must also

consider the cost of communicating with the central server, and of processing the server's
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replies.

T.3.1 Cost of Piggybacking Done

In Figure 7.1, the cost of including done in messages is given. The figure shows the

round trip time for a low level send and reply when done information is piggybacked on the

send message. In this example, the reply is a null message not containing done information.

The time given includes the time needed to construct and transmit each message, and

the time needed for the recipient to read it, but not the time needed to process the done

information. The values given in the figure do not include garbage collection time; we

did not allow garbage collection to take place during a measurement, because its effect is

too variable. The figure shows the relationship between message round trip time, size of

done and the size of each aid. In this set of tests, all aids in done at a given time had

the same length; a different aid size was used in each test. The shortest aids used were

those representing non-nested topactions; these were 16 bytes in length. The longest aids

represented deeply nested actions with nine ancestors, and were 88 bytes long.

Each line in Figure 7.1 is a best fit line, obtained from 11 points, representing done sizes

of 0, 10, 20, ... , 100. These lines were calculated using the method of least squares. For

each aid size, the correlation between done size and message round trip time was greater

than 0.99. The slopes of these lines are 280psec/entry when done contains only topaction

ida, 370Asec/entry for aids with two ancestors, 480ssec/entry for ida with 5 ancestors and

650psec/,entry for ida with 9 ancestors.

As illustrated in Figure 7.2, the cost of piggybacking done is essentially the same for the

central server and deadlining optimizations. This is to be expected, because the structure

of done and the operations involved in transmitting and receiving messages are the same in

both versions of the algorithm. In each case, the round trip time may be approximated by

the following formula:

time = 15msec + size-of-done * (240jsec + aid-size * 40Aec)
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Figure 7.1: Cost of Piggybacking Done
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Round Trip Time (msec)
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Figure 7.2: Cost of Piggybacking Done: central server algorithm vs. deadildng

In the formula, size-of-done is the number of entries done contains, and aid-size is the

number of components ((gid, sequence number) pairs) that each aid has. The formula was

obtained by performing linear regression on the slopes of the regression lines for different

aid sizes. The slope of this second regression gives the 40psec figure in the formula; the

intercept gives the 240Asec figure. The 15 msec value is the mean intercept of the original

regression lines.

The formula reflects the fixed cost of transmitting a message, the fixed cost associated

with each aid (e.g. cost of procedure calls to the routines to read and write each aid),

and the time needed to read and write each aid component. Note that done contains the

same amount of information in both versions of the algorithm. In our version, each aid is

four bytes longer than in the deadlining implementation, because the generation number is

included. In the deadlining 3cheme, however, each done entry includes a four byte deadline
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in addition to the aid; therefore, done entries are the same size in both cases.

7.3.2 Cost of Merging Done

Next, we examine the cost of merging a copy of done received in a message with the

version a guardian already has. In our experiments, the cost of merging two "similar"

copies of done is considered. We consider two versions of done to be "similar" if they

contain the same set of entries. (In Argus, two distinct objects having the same value are

said to be "similar" but not "equal".) Tests were run using similar versions of done because

this is expected to be the most common case. Because done is included in nearly every

message between guardians, the guardians' copies of done should not differ very much, if

they communicate frequently.

This time needed to merge two copies of done depends on several factors. The most

obvious of these is the number of entries that done contains. The size of each aid in done also

matters, because merging involves many coluparisons of aids, and larger aids take longer

to compare. A third factor is the time needed to perform lookups in the generation map.

Before an aid is added to done, its generation number is compared with the gmap value of

its origin. If the aid has a smaller generation number, then it is not added to done, because

its descendants can be detected as orphans using gmap. Because we have implemented the

generation map as a sorted array, the time needed to perform a gmap lookup, using binary

search, should be logarithmic in the size of gmap. Other implementations (e.g. hash table)

would allow faster lookups for large gmaps, but might increase the space required, or the

time needed for other gmap operations. In our experiments, we determined the time needed

to merge two copies of done both for a small generation map (only one entry) and a large

one (one hundred entries).

An additional cost in merging done is the time needed to determine whether orphans are

present in the system, and to destroy them. In the case of similar dones, no actions can be

detected as orphans, so this factor does not affect the merge time. In the more general case,
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Figure 7.3: Cost of merging two similar dones when gmap contains only 1 element

it is difficult to determine the time needed to find and kill orphans, because this depends

on the number of active threads within the guardian that have to be examined and on the

time each orphan runs before destroying itself.

Figure 7.3 gives the time needed to merge two similar copies of done when gmap contains

only one entry. The fi , re consists of the regression lines for merge time vs. done size,

obtained using the method of least squares. Figure 7.4 gives the merge times when gmap

has one hundred entries. The correlation coefficients obtained were almost exactly equal

to 1 (0.997 or larger).

The cost of merging done when the deaxdlining optimization is used is given in Fig-

ure 7.5. From this figure, it is dear that merging done takes longer when the central server

optimization is used. The main reason for this is the cost of looking information up in

the generation map. This cost is significant even when gmap is small. To minimize the

time required, the procedure ca l to the gen.map data type's lookup routine was inlined.

However, time is still needed to fetch the origin and generation number from each aid in

the incoming done, search the generation map for the origin's gid (using binary search)

and compare the origin's generation count with the aid's generation number. These few
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Figure 7.4: Cost of merging two similar dones when gmap has 100 elements

extra integer comparisons per entry are enough to subtantially increase the merge time.

Figure 7.6 illustrates the difference in merge time for the two algorithmt. This figure shows

the time needed to merge done for the deadlining algorithm and the central server scheme;

it also shows the merge time for the server method when the gmap lookup is omitted.

7.3.3 Communication With the Map Service

The next orphan detection cost we will examine is communication with the central

server. Figure 7.7 shows the time needed to send a map request to a server and receive a

response. This includes the time to construct and transmit the request, processing time at

the server, and the time needed to receive and read the reply. The figure shows that the

insert operation take much longer than refresh; the reason is the stable storage write that

insert requires.
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Figure 7.5: Cost of merging two similar dones for the deadlining, algorithm
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Figure 7.6. Cost of merging done: server method vs. deadlining
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Figure 7.7: Time required for server operations
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Size of Map
7.3.4 Processing Map and Gmap

Another cost of the orphan detection algorithm is the time needed to merge a copy of

the map or generation map received from the central server with the version the guardian

already has. Figure 7.8 indicates the time needed to merge two maps or generation maps.

Garbage collection time is not included; garbage collection was not allowed during a mea-

surement. In each case "similar" maps or gmapu were used. This is realistic for map. If

guardian crashes are relatively rare, few entries should change between successive calls to

the map service, and the old and new maps should be "almost similar". For the generation

map, the number of differences between the old and new maps depends on the frequency of

generation updates and refreshes. However, if guardians are not created and destroyed very

often, the generation maps should differ mainly in their generation values, not in the gids

they contain, and the mt.ge time should be essentially the same. The additional cost in

this case is the time needed to find and destroy orphans dependent on the guardians whose

generation counts have changed. As mentioned earlier, this cost is difficult to measure.

100



Merging maps involves essentially the same operations as merging generation maps, so

we would expect the time required to be nearly the same. The figure shows that this is

true. The cost of combining two maps (or gmaps) is linear in their size. This is as expected,

because the sorted array representation of map and gmap allows a linear time merge.

In the figure, we also give a regression line for the time needed to merge maps when

the deadlining optimization is used. As expiained in (121, the negative Y-intercept of the

regression line is a result of random variations in the data. Clearly, the regression line does

not accurately describe the time needed to merge small maps. For large maps, the merge

time for our algorithm is slightly larger than for the deadlining scheme.

Even though merging maps takes slightly longer when the central server scheme is used,

the cost resulting from merging maps is less than for the deadlining method, because maps

are merged much less frequently. When our method is used, maps are merged when new

map information is received from the map service. If crashes are rare, this should not

happen very often. In the deadlining scheme, the map is piggybacked on almost every

message between guardians, creating a larger total cost.

An additional cost related to orphan detection is the time needed to remove old entries

from done when a new generation map is received. The time required depends on the number

of elements in done and the time needed to look up their generations in gmap. Figure 7.9

gives the relationship between size of done and deletion time, for large and small gmaps.

The values given in the figure are for the case when all done entries are for topactions and no

entries actually need to be removed. (The time needed to remove old entries is independent

of the size of the aids and the number deleted.) We delete old elements by scanning the

done array and comparing each aid's generation number with its origin's generation count.

If the ith aid does not need to be deleted, a pointer to it is stored in the (i - k)th position

in the done array, where k is the number of elements deleted so far. If the aid is old, we

simply go on to the next id. Finally, the array is trimmed to the size of the new done.
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Figure 7.9: Time needed to delete old entries from done

7.4 System Performance Under Selected Loads

In this section we examine the actual performance of the Argus orphan detection al-

gorithm under different loads. Our tests of the system's performance deal entirely with

the abort orphan part of the algorithm; the effects of crashes and map information are

ignored. There are two reasons for concentrating on abort orphans. One is the greater im-

portance of abort orphans in determining system performance. Guardian crashes should be

relatively rare, so map information should change much less rapidly than done and gmap.

Therefore, guardians should communicate with the generation service considerably more

often than with the map service, and abort orphans should be more numerous than crash

orphans. For this reason, the performance of the system should be determined mainly by

the behavior of the abort orphan part of the algorithm.

Another reason for measuring the performance of only the abort orphan part of the

algorithm is the limited number of guardians that could be created for these tests. Only
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a limited number of machines were available for the tests, and only a small number of

guardians could run on a single machine simultaneously. When too many guardians are

created on one machine, interference between them can 3eriously affect performance. The

results of such tests may not be applicable to the case of only one (or a few) guardians

per node. However, with only a small number of guardians in each test, the number of

crashes occurring during an experiment would be too small to be interesting, unless an

unrealistically high crash rate was used.

The tests described in this section were run using a modified version of a load generator

developed by Thu Nguyen (12]. This program was originally developed to aid in measuring

the performance of the deadlining optimization of the orphan detection algorithm. The load

generator consists of three components: a load manager, to interact with the user and run

specified tests, a load compiler, which accepts a job specification indicating the number and

types of guardians to be created, and a generic guardian type. The load manager uses the

compiler to compile a test description, creates a generic guardian for each guardian in the

test, and passes each guardian the compiled description of its behavior. The guardians are

then allowed to run for a specified period of time. Each guardian carries out its specified

behavior, and collects data about events related to orphan detection. The behavior of

each guardian is defined in terms of events relevant to orphan detection: frequency of

action creation, abort rate, frequency of handier calls to each other guardian, time spent

busywaiting, etc. This information is provided for the background thread at each guardian,

and for each handler the guardian has. In addition to carrying out its specified behavior,

each guardian collects data concerning the performance of orphan detection; this data is

sent to the load manager before the guardian is terminated.

A full description of the load generator will not be given here; we will only indicate the

general nature of our modifications to it. The main changes involved altering the generic

guardian type to use our orphan detection modules, and to record the data appropriate for

the central server algorithm instead of for the deadlining scheme. For example, information

about frequency of communication with the central server was added; measurements related
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to deadlines were omitted as no longer applicable.

T.4.1 General Characteristics of System Tests

In most of our system tests, the pattern of communication among guardians involves

one or more client guardians making calls to a single server. This is a realistic pattern

for many applications. We also consider cases of related subsystems, each consisting of a

server and clients. In these tests, each client communicates only with the server for its

subsystem; servers for different subsystems occasionally communicate with each other. It

is important not to confuse the "server" guardians in our experiments with replicas of the

map and generation services. Both the "client" and "server" guardians of our experiments

are clients with respect to these services. To avoid confusion, in this discussion, the terms

"client" and "server" will refer only to the ordinary guardians in our experiments. The

term "replica" will be used to refer to map service and generation service replicas.

In each of our experiments, a single replica was used for the map and generation services.

Increasing the number of replicas should not affect performance very much. If several

replicas were used, gossip messages could be sent after each update. In this case, replicas

would have the same information most of the time. When a client needed a new map or

gmap it would normally be able to obtain it from the first replica it tried. As a result,

the performance of a multiple replica system should not be very different from that of a

single replica implementation. Although tests could have been run using several replicas,

with less frequent gossip or artificially high loss rates for gossip messages, this did not seem

worthwhile.

Our tests also do not make use of background queries from the map.-service to the

replicas. If handler calls are made frequently, as in our tests, then normal refresh operations

will have to be performed soon after any change to the map, and background queries will

generally not be made anyway. In this case, adding frequent background queries creates

more work for the guardian, without actually reducing handler call processing delays, and
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without reducing the size of done.

To avoid the problem of interference among guardians, most of our tests involved only a

single guardian per machine. When the number of guardians in an experiment exceeded the

number of available machines, the guardians were distributed among machines to balance

the load as evenly as possible.

T.4.2 Quantities Measured

The main quantities measured in these experiments were the number of entries in done

and the frequency of communication with the server. The time needed to perform important

actions, including the duration of topactions and the time needed to communicate with the

server, were also Iecorded. However, timing measurements made during these tests were not

reliable. Because many processes besides our guardians run on each machine, our guardians

could be interrupted during a timing measurement, while some other process ran. The

other process could run for a long time (seconds, while most events we are measuring are

only milliseconds long), completely invalidating the measurement. Garbage collection at

the guardian also afected the measured time values.

When running the tests described in the previous section, it was possible to obtain more

accurate timing measurements. This was accomplished by locking out all other threads

at the guardian, and by measuring resource usage by the guardian's process (using the

appropriate UNIX system call) rather than real time. When real time measurements were

needed, in order to measure the time required for communication with the server, many

short trials were run, with garbage collection disabled during a trial, and an average value

for all trials was then calculated.

It should be noted that all tests were run on time sharing systems, where the presence

of other users may affect results either by interrupting events and affecting the time needed

for them to complete, or by slowing down the guardians. If a guardian runs more slowly
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than expected, it will create fewer actions per unit time than expected, and will have

fewer done entries than otherwise. To minimize this interference, tests were run when

other users were not on the machines involved. However, some interference must still be

expected, from system processes and from network traic between machines not involved

in the experiments.

7.4.3 Issues in Performance Measurement

Several problems had to be addressed in order to obtain meaningful results from our

experiments. One problem is that the size of done is not constant throughout an experi-

ment. Done continually grows as actions abort, and then shrinks suddenly when a guardian

advances its generation count in gmap, allowing its old done entries to be purged. To ob-

tain accurate estimates of the long term average size of done, without running very long

experiments, it was necessary to set the running time of each test equal to a multiple of the

generation update interval.

Another problem to be considered is that generation advancement by different guardians

may become synchronized. If each guardian uses the same generation update interval, then

their generation updates can stay synchronized throughout an experiment. In this case,

if one guardian advances its generation shortly before a second guardian does, the second

guardian may perform its update before inf rmation has propagated to it from the first

guardian via handler calls. Thus, the second guardian learns about the change to the first

guardian's generation count when it receives the result of its own update operation. The

first guardian, on the other hand, needs to use the refresh operation to learn about the

second guardian's generation change. Later, the first guardian must call the generation

service a second time its generation count is increased again. Thus, two guardians in a

system that at first appears symmetrical have very different behavior. One guardian needs

to talk to the generation service twice as often as the other. On the other hand, if the

two guardians did not perform their updates so close together, each would need to talk to
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the server with the greater frequency. Thus, very different performance may be obtained

depending on precisely when the two guardians perform their updates.

Clearly it is undesireable for the results of our experiments to depend heavily on circum-

stances such as the precise timing of the updates, which may vary each time an experiment

is run. In a real system, the guardians probably would not be perfectly synchronized, and

would not constantly call the service at nearly the same time. To obtain more realistic

results, we adopted the following procedure. In experiments in which there were exactly

two guardians that performed generation updates, we noted whether one guardian never

(or almost never) performed refreshes. If so, we inferred that this guardian was performing

updates immediately after the other guardian. In this case the experiment was run again,

to get data for the normal case. We observed that in either case, the size of done was the

same. In addition, in the special case, the guardian that performed its updates first had

the same refresh rate as guardians do in the normal case. For this reason, only data for the

normal case are presented here.

When there are many guardians, it is more likely that, even in a real system, some

updates will occur at almost the same time. In these cases, we simply ran the experiment

many times, and took averages over the different trials and the different guardians in each

trial.

A third difficulty in measuring performance arises if action aborts occur randomly. We

would like to examine the behavior of a system where a certain fraction of handier calls

abort and the rest commit. Each call could be modelled as an independent Bernoulli trial.

However, this introduces randomness into our measurements of the size of done. Clearly, the

more actions that happen to abort in a particular test run, the larger done will be. Unless

very long experiments are run, there will be a lot of variation in the results. To obtain

more consistent results without longer experiments, we aborted actions regularly, instead

of at random. For example, if a one percent abort rate was used, then every one-hundredth

action was aborted. This is nct an ideal solutionm, but seems unavoidable unless very long
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experiments are run. The same solution was used in Nguyen's research on the deadlininZ

optimization [13].

T.4.4 Test Results

Our first test load consisted of a single client making handler calls to a single server.

Calls were made every 500 milliseconds. The service time for each handler call was set to

zero (i.e. call does nothing), except that calls selected to abort were given non-zero service

times. This ensured that a call did not commit before we had a chance to abort it. A fixed

handler call abort rate of one percent was used. In different runs of the test, the interval

at which the generation service was notified of generation changes varied from five seconds

to four minutes. The specific values used were 5, 10, 20, 30, 40, 60, 90, 120, 180, and 240

seconds. Each test was run for ten minutes, except for the intervals of 90, 180 and 240

seconds; these were run for nine or twelve minutes, so the experiment length would be a

multiple of the update period.

Our second test consisted of two clients making handler calls to one server. As in the

first test, calls were made every 500 msec and had zero service time; the abort rate was one

percent. The values presented are for the case when the two clients do not notify the server

of generation changes at almost exactly the same time. A third test was run under similar

conditions, but with four clients instead of two.

The results of these tests can be found in figures 7.10 and 7.11. The values shown were

obtained by averaging several runs with each generation update interval. The results for

any single run varied from the average by up to several percent, because of the different

factors mentioned above.

Figure 7.10 indicates the average size of done, measured at the server guardian. The

figure shows clearly the expected linear relationship between generation update interval

done size, except for one anomalous point with four clients and a 60 second update interval.
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Figure 7.10: Size of done for a client-server system
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The size of done is also proportional to the number of clients. Done remains very small

in every case, except for the longest update intervals when there are four clients. To put

these values in perspective, recall from the previous section that the round trip time for a

message with an empty done is approximately 15 msec. Piggybacking a 5 element done on

the send message increases round trip time by 1.5-3 msec, depending on the size of the aids

in each done entry. Merging two dones of this size requires 1-2 msec if gmap is small. For a

100 element gmap, 2-3 msec are required, but this time could be reduced if a more efficient

gmap representation was used.

Figure 7.11 gives the probability that a guardian needs to obtain a new gmap from

the service when a message is received containing a piggybacked done. This probability

is calculated by dividing the number of refresh operations performed by the number of

messages containing generation timestamps that the guardian received. In the single client

case, the client never performs a refresh operation, because the server is the only other

guardian present; the server never runs topactions and its generation count never changes.

For this reason, the client's refresh probability for the single client system is not included

in the figure. The refresh probability for the server is essentially constant, regardless of

the number of clients. Increasing the number of clients causes the number of refreshes

performed by the server and the number of messages processed by it to increase in the same

proportion, leaving the refresh probability unchanged. For this reason, the server's refresh

probability is given only for a single client system.

As shown in the figure, in the two client case, the refresh probability for the server was

approximately half as large as for the clients. In absolute numbers, the server performed

twice as many refreshes as each client, because it needed to obtain a new gmap after each

client advanced its generation. A client, on the other hand, only needed a new gmap after

the other client advanced its generation count. The server's frequency value is half the

value for the clients, because the server processed four times as many messages containing

piggybacked timestamps as each client did. The server had to deal with messages from

two clients, while each client only received them from one server. The server received both
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handler call messages and two-phase commit messages containing piggybacked timestamps.

The clients only received handler replies with piggybacked stamps; two-phase commit reply

messages do not contain piggybacked orphan information. Thus, when computed as a

proportion of messages with piggybacked stamps, the server's refresh frequency is half that

of the clients. However, when calculated in absolute numbers, or per unit time, it is twice

as large.

In the above data, only the refresh operations performed by each guardian were con.

sidered. The next two figures give the combined frequency of all generation service calls,

both updates and refreshes. Figure 7.12 shows the mean time between generation service

calls. Because the call frequencies for servers and and clients were essentially the same,

only those for servers are given. Figure 7.13 shows the number of generation service calls

divided by the number of messages received with piggybacked timestamps. In this way,

the cost of updates is amortized over these messages. Because servers process many more

messages than clients, their call rate is smaller when expressed as a proportion of messages

processed. For this reason, Figure 7.13 includes results for clients and servers separately. As

in Figure 7.11, results for the server are given only for the single client case; with different

numbers of clients, the server's generation call rate was essentially the same.

In addition to client-server structured tests, we also considered test cases involving par-

tially independent subsystems. Each subsystem consisted of a single server and some clients.

Most communication was between clients and the server for the client's own subsystem; oc-

casionally, servers in different subsystems communicate with each other. In these tests, two

parameters were varied: the generation update interval and the cross talk rate between

subsystems. To keep the number of experiments manageable, we first varied the update

interval, while holding the cross talk rate constant; next the cross talk rate was varied for

a constant update interval.

The first case of this type involved two subsystems, each with two clients and one server.

Each client made a handler call to its server every 500 msec. One percent of all calls were
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Figure 7.12: Generation service calls for a client-server system

aborted. In addition, the servers commiuicated with each other once every 50 seconds.

Update intervals of 20, 30, 40, 60, 90, and 120 seconds were used. The results for these

cases are given in Figure 7.14. Next, the update interval was fixed at 50 seconds, and cross

talk intervals of 1, 5, 10, 20, 30, 40, 60, 90 and 120 seconds were used. These results are

shown in Figure 7.15. For purposes of comparison, the figures also show the size of done

for systems with two or four clients and a single server. Note that for a tightly coupled

system, with cross talk more frequent than the per client generation update interval, the

size of done is close to that of a single server four client system. When cross talk is rare, we

approach the single server two client system results. For cross talk intervals comparable to

the update interval, we obtain intermediate values.

Note that in this experiment, the servers and clients both create topactions (although

the servers' actions do not abort); therefore, they both make insert calls to the generation

map service. This increases the number of refreshes that all guardians have to perform.

With the cross talk interval fixed at a large value, this effect is unimportant. When the

generation update interval is long, the servers make very few updates, and provoke few
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Figure 7.14: Two semi-independent subsystems - cross talk every 50 sec
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Figure 7.15: Two semi-independent subsystems - update generation every 50 sec
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refreshes by clients. When the update interval is short, then most intervals do not include

server cross talk, and therefore do not include server updates. When the server cross talk

interval is made very small, however, then each update interval includes updates by the

servers; thus the total number of updates is increased significantly.

A second case of this type was made using four subsystems, each with four clients and

a server. Every server communicated with each of the other servers once during each cross

talk interval. Because of the limited number of machines available, it was not possible to use

a separate node for each guardian. In order to make the system as symmetrical as possible,

and to balance the load, each server was given its own machine. Four other machines were

used, each containing one client from each of the four subsystems. The update intervals and

cross talk rates used in this experiment were the same as in the previous one. The results

are presented in Figures 7.16 and Figures 7.17. The general relationships in this case are

similar to the previous one except that the size of done is much larger.

Figures 7.18 and 7.19 show the relationships among refresh probability, generation up-

date interval and cross-talk, for two subsystems with two clients and one server each, and

for the case of four subsystems, each with four clients and one server. The figures show the

refresh probability for a client guardian, for different update intervals and cross talk inter-

vals. As before, refresh probability is the number of refresh operations performed, divided

by the number of messages received that contain a piggybacked done.

Finally, we consider the effect of different abort rates. Although the rates we consider in

this test are unrealistically high, it is still interesting to examine the behavior of the system

under these conditions. In this experiment, we test a load consisting of two subsystems,

each with two clients and one server. To ensure that cross talk happens at all phases during

the growth and shrinkage of done, we set the cross talk interval to 50 seconds and the

update interval to 60 seconds. Abort rates of 1, 2, 4, 6, 8, and 10 percent were used. These

results are presented in Figure 7.20. As expected, the size of done grows linearly with the

abort rate; the refresh probability is unaffected.
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7.5 Comparison With the Deadlining Algorithm

In order to evaluate the performance of the central server optimization of orphan detec-

tion, we will compare its performance with that of the deadlining method. The performance

results for the deadlining scheme were obtained from (12]. The main issues in evaluating

performance are the effectiveness of the two methods in reducing the size of done and the

amount of additional overhead needed to accomplish this. In the central server method, this

overhead results from the need to communicate with replicas of the generation service. In

the deadlining scheme, it results from the need to extend the deadlines of actions, to prevent

them from terminating prematurely if they run longer than the initial deadline period:.

7.5.1 Size of Done

Figure 7.21 shows the relationship between the size of done and the done deadline period,

for a system consisting of one server and one or more clients. The deadline period is the

time a topaction is allowed to run before its deadline expires, i.e. when a topaction is

created, its deadline is set equal to the current time plus the deadline period. In the test

cases described by the figure, each client made a ha-dler call to the server every 500 msec.

Except for calls made by actions that were selected to abort, handler calls had a zero

service time (or as close as possible to zero). One percent of all handler calls were aborted.

For purposes of comparison, the size of done using the central server scheme is given, for

different generation update intervals. The same scale is used to represent generation update

intervals and deadline periods.

The figure shows that when deadline period and generation update interval are equated,

the size of done is approximately twice as large for the deadlining method as for the central

server algorithm. The reason is that with a deadline period of t seconds, done contains

aids for aborted actions from the last t seconds. When the central server algorithm is used,

done contains aids for a guardian's aborted actions from the last 0-t seconds, depending

on when the guardian last notified the server of a generation change. On average, done
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Figure 7.21: Size of done for a client-server system; server method vs. deadlining
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contains aids for the last t/2 seconds, and is half as large as in the deadlining scheme. Note

that while the number of aids in done for a particular guardian grows to a maximum and is

then reduced to zero when the generation service is notified of a generation change, done as

a whole does not grow and shrink as drastically, because different guardians advance their

generations at different times.

7.5.2 Total Cost of Orphan Detection

The size of done alone is not a sufficient measure of the cost of orphan detection. The

two algorithms differ in the amount of overhead they produce, even when the size of done

is the same. For example, merging two similar copies of done takes much longer in our

implementation of the server algorithm than in Nguyen's implementation of deadlining.

In addition, the central server algorithm involves overhead from communication with the

map and generation services. To give a more accurate idea of the performance of the two

algorithms we have calculated the total overhead of orphan detection.

The total cost of orphan detection was calculated using the results presented earlier in

this chapter. For the deadlining scheme, the overhead included in the calculations is the

cost of processing done. For the central server algorithm, the cost of processing gmap is

included as well. The values given are for a system with one server, a small number of

cliens, and a one percent abort rate for handler calls. Each client starts one topaction

every 500 msec, and makes one handler call to the server per topaction.

Only the cost of detecting abort orphans was considered, because we expect this to

dominate the cost of crash orphan detection. When deadlining is used, it should be possible

to keep the map small by choosing an appropriate map deadline period, because crashes

are relatively rare. With the central server algorithm, if there are relatively few crashes,

guardians should not need to contact the map service very often.

For the deadlining algorithm, the main cost of orphan detection is the time needed to
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piggyback done in messages, and to merge piggybacked copies of done with the versions that

guardians already have. For the central server algorithm, the largest costs are piggybacking

and merging done and communicating with the generation service. The time required for

communication with the service was amortized over the total number of handler cals.

The total cost of orphan detection is given by the following formulas. For the deadlining

method, the cost per handler call is 27psec(n)(dp), where n is the number of clients in the

system, and dp is the done deadline period in seconds. For the central server algorithm, the

cost is 13.2/usec(n)(ui) + 8.5msec(n)/(ui). In this formula, n again represents the number

of clients; ui is the generation update interval. The derivation of the cost formulas can be

found in the Appendix.

Figure 7.22 gives the total overhead of the of the two algorithms for different generation

update intervals and done deadline periods. As shown in the figure, the cost of the server

method reaches a minimum at an update interval of 25.4 seconds, regardless of the number

of clients. For smaller intervals, overhead is increased because more generation service

operations are performed; for larger values, the size of done increases, so more time is

needed to process it. The minimum overhead is approximately 670Asec(n) per call. The

cost of the deadlining algorithm is less than this if the deadline period is less than 24.8

seconds.

7.5.3 Extension of Deadlines and Generations

From figure 7.22, it appears that .the cost of orphan detection using the deadlining

method always decreases as the deadline period gets shorter. This is not really true. When

the deadline period is short, actions may need to run longer than their deadlines. In this

case, the actions' deadlines must be extended. This does not happen in our example,

because each topaction makes only a single handler call, with zero service time. However, if

topactions made many calls or if calls ran longer, deadline extension could become necessary.

The cost of deadline extension naturally increases as the deadline period becomes shorter,
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Figure 7.22: Total cost of orphan detection; server method vs. deadlining
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because more actions run past their deadlines, and more extensions are required for each

action.

The results presented in Section 7.5.2 show that any deadline period of less than ap-

proximately 25 seconds produces better performance than the central server algorithm.

Therefore, unless actions are very long, it should be possible to choose a deadline period

that is long enough to avoid the need for extension, but short enough to give better per-

formance than the central server scheme. Nevertheless, it is interesting to consider the

performance of algorithm in the presence of long actions, when deadline extension is re-

quired. We also consider the cost of extending actions' generations when the central server

algorithm is used.

We do not have data concerning the cost of deadline extension. In [12], information

is provided concerning the frequency of deadline extension, but not the time required. In

addition, we have not implemented generation extension, and have no data concerning its

cost. Therefore, we must estimate the cost of extension.

We will consider a client-server system in which each topaction makes a long series of

handler calls. Each call has 500 msec service time. As soon as one call completes, the next

call is made. One percent of all calls abort. We consider only the extreme case in which

topactions run for a very long time. In fact, we will assume that a single long topaction runs

the whole time. Our derivation of the cost estimate for this case is given in the Appendix.

The cost of orphan detection is obtained by adding the extension overhead to the cost

in the absence of extension. For the deadlining method, the cost per handler call is

18iusec(n)(ui) + zc(ci/dp)

For the central server algorithm, the cost is

8.8sec(n)(ui) + (17msec(n) + xc)/(2ui)

The derivation of these formulas is given in the Appendix.
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Figure 7.23: Cost of orphan detection with extension of deadlines and generations

Figure 7.23 shows the cost of orphan detection in the presence of extension, for one,

two and four clients. When there are only one or two clients, the minimum cost is nearly

the same for both methods. (The deadlining algorithm has a slightly lower minimum cost.)

With four clients, the minimum cost of the deadlining algorithm is significantly lower than

the cost of the central server algorithm. In general, the minimum cost of deadlining is less

than the cost of the central server algorithm, as long as zc < l7msec(n). This formula was

obtained by calculating the minimum cost for each algorithm (differentiate cost formula,

set equal to zero, substitute back in), setting the minimum, costs equal, and solving for zc.

For the central server algorithm, the ideal generation update interval ui* andmimm
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Figure 7.24: Cost of orphan detection vs. number of clients

cost cra are given by the following formula-

S= F17msec(n) + :c. -17.6As(n)

V 17.6Asec(n) ' - 7 lmsec(n) + zc

The ideal deadline period dp" and minimum cost for the deadlining scheme are as follows:

dp" = 3 ez;, = ,/36sec(n)(zc)

Figure 7.24 shows the minimum orphan detection cost for the deadlining and central

server algorithms, in the presence of extension. The cost of orphan detection was calculated

for systems with one to ten clients.

7.6 Performance With a Large Number of Guardians

It is important to consider the behavior of the Argus orphan detection method in a

system containing a large number of guardians (e.g. hundreds). Although we were unable

to run experiments with so many guardians, we can still get some idea of the likely behavior

of the algorithm.

128



If the central server algorithm is used for orphan detection in a large system, there may

be problems caused by unnecessary gnap refreshes. Consider a large system with many

guardians (hundreds, perhaps thousands), but which is divided into small, loosely coupled

subsystems, with only occasionaly inter-subsystem communication. For example, suppose

that guardians G, and G 2 communicate with each other most of the time, and rarely (or

never) communicate with other guardians. Also, suppose that GI and G2 initially have

timestamp to. When G, notifies the generation service of a change in its generation count,

a new gmap and a timestamp t1 are returned. Subsequently, G, can make a handier call to

G2, with tI piggybacked on the call message. Because tL > to, G2 must obtain a new gmap

from the service before processing the handier call. However, if the number of guardians

in the system is sufficiently large, there is a high probability that at least one guardian

notified the server of a generation change after G1 received the service's reply. In this case,

the gmap returned to G2 will reflect this change, if the update and refreh took place at the

same replica, or if gossip has propagated between the two replicas. For a very large system,

there would be a high probability of an update occuring at each replica, guaranteeing that

the timestamp t2 returned to G2 will be larger than t1 . When G1 receives G2 's reply, G,

will need a new gmap, because the reply message's stamp t2 is greater than GI's stamp tI.

But when G, performs a refresh, there is a high probability that another guardian will have

advanced its generation, causing the returned timestamp to be even larger than t2. Thus,

G, and G2 are forced to get a new gmap from the server every time they receive a handler

call or reply. Clearly, this is unacceptable behavior; it is as inefficient as sending the whole

gmap in each call and reply. In fact it is worse, because of the time needed to make the

extra calls to the server.

The above problem is unlikely to affect the crash orphan part of the algorithm. If

guardian crashes are relatively rare, map will not change very often, so map updates will be

much less frequent than gmap updates. Therefore, it is unlikely that the map will change

so often as to force guardians to call the map..ervice each time a message is received.

The effects of system size on the size of done are similar for both the central server
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scheme and the deadlining method. In a large, tightly coupled system, done may grow very

large when either method is used. A tightly coupled system may result from a pattern of

communication where every guardian talks directly to all others, or where all guardians

are clients of shared services. The latter pattern is realistic for many applications. In this

case, done entries will propagate rapidly among guardians. The aid of an action that aborts

anywhere in the system will have a chance to propagate to all guardians before it is deleted.

Thus, the size of done is proportional to the size of the whole system.

When either optimization is used in a large, loosely coupled system, the size of done

should remain limited. We can define an "effective size" of the system, reflecting the number

of other guardians with which a given guardian communicates, directly or indirectly. The

"effective size" of a loosely coupled system should be defined in such a way that the average

size of done for a system of given effective size k is the same as for a closed, tightly coupled

system with k guardians. It is not clear how to determine the "effective size" of a system

for a given pattern of communication; this is an area for future research.

If a system contains a group of m guardians that only communicate among themselves,

we can take m to be the "effective size" of the system, as viewed by each of those guardians.

The guardians in the group never receive done information from guardians outside the group,

so the size of their copies of done should be proportional to m, not to the total system size

n. If inter-subsystem communication does occur, but only rarely, many entries in done will

be deleted before they are sent outside the local subsystem. When the deadlining method

is used, the aids are deleted when they reach their deadlines; in the central server version of

the algorithm, an aid is deleted when the gmap value of its origin is large enough. Thus the

"effective size" of the system may be considerably less than the total number of guardians

it contains.

Because the deadlining optimization treats map and done similarly, the above discussion

of the size of done in loosely and tightly coupled systems should also apply to the size of

map. However, the analysis is not very relevant for map, because deadlining should keep
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the map small for realistic system sizes and map deadline periods. Also, map deadlines will

probably be set long enough that most systems appear "tightly coupled" in the sense that

map information will propagate to most guardians before being deleted.
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Chapter 8

Conclusion

In this thesis, we presented an implementation of the central server optimization of the

Argus orphan detection algorithm. We explained how the use of a central service to hold

orphan detection information can reduce the amount of orphan information sent in normal

system messages, thereby lowering the cost of the algorithm. Specifications for the central

service were given, and its implementation was discussed in detail. We also described the

modification of the Argus system to make use of the service for orphan detection. The

effect of the central server algorithm on the cost of orphan-related operations and on overall

system performance was measured under a variety of conditions. The central server scheme

was also compared to another optimized version of the orphan detection algorithm, called

deadlining.

8.1 Performance of Orphan Detection

The results in Chapter 7 show that the central server optimization is more practical

than the unoptimized version of the Argus orphan detection algorithm. Instead of allowing

done to grow without bound, the central server scheme keeps it at a relatively small size.

However, even for small systems, the central server algorithm is somewhat inefficient. In

a client-server system with four clients, the cost of orphan detection is three milliseconds

per handler call, or approximately one-sixth of the time needed for a null handler call and

reply.
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The deadlining optimization is more efficient than the server method, for the systems

that we have considered, provided that the deadline period is chosen appropriately. If

actions are relatively short, a deadline period can be chosen that is long enough to make

deadline extension unnecssary, but short enough to allow bettei performance than the

server method. Even if actions take a long time to complete, making deadline extension

and generation extension necessary, the minimum cost of orphan detection is smaller for

the deadlining scheme.

Even though deadlining is more efficient than the server method, it is still somewhat

costly. In a system with four clients and one server, the cost of orphan detection is 1-2 msec

for a deadline period of 10-20 seconds. (If the deadline period is much shorter than this, we

must take into consideration the overhead of identifying and deleting obselete done entries;

also, it is more likely that deadline extension will be required.) If actions take a long time

to complete, so that deadline extension is required, the minimum overhead is 1.5 msec per

call. This is still a significant fraction of the time needed for a handler call.

It should be noted that the above results depend on our assumptions about the rate at

which handler calls are made and the frequency with which they are aborted. If calls are

made less often or if abort rates are less than in our experiments, the size of done and the

overhead of orphan detection will be smaller.

The overhead of orphan detection can be reduced if we avoid adding entries to done

unnecessarily. Before adding the aid for an aborted handler call to done, the Argus system

can try to notify the target of the call that the call is being aborted. If the target guardian

is contacted successfully, and is able to abort the call and destroy all of its descendants (by

notifying other guardians about the abort, if necessary), then no orphans will be created by

the abort. In this case, an entry for the call need not be added to done. Only if the system

fails to locate and destroy the call's descendants must a done entry be added. It should

be possible to eliminate the descendants of an aborted call in this manner except when

some type of persistent failure has occurred, such as a guardian crash or network partition.
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Therefore, the number of crucial aborts (i.e. aborts that cause entries to be added to done)

should be considerably less than the total number of aborts. Because crucial aborts happen

only in the presence of failures, we expect that their frequency will be much lower than the

abort rates used in our experiments.

Another way to reduce the overhead of the central server algorithm is to reduce the

frequency with which guardians communicate with the generation service. There are at

least two ways to do this. One method is for guardians to notify the service of a generation

change only when dore contains entries that can be removed; the other involves passing some

gmap information in messages between guardians. These methods can be used together.

Guardians should not notify the service of a generation change unless done contains

entries from generations that have not yet been entered into the service. A guardian can

check for this by examining its own copy of done. However, it is possible that a descendant

of a topaction caused entries to be added to some other guardian's done and that these

entries have not yet propagated to the topaction's guardian. This is possible only for active

topactions; if done entries are created for a topaction's descendants, at least one is always

added to the topaction's guardians's done by the time the topaction completes. We have

not decided how to handle this case; one possibility is to query the guardians of descendants

of active topactions, when necessary, to determine whether the descendants added entries

to done.

In [6], it is proposed that guardians should keep track of recent changes to the generation

map, and piggyback these changes in normal messages between guardians. A list of recent

changes would be returned by the generation service, in addition to the new map and stamp,

whenever an update or refresh operation was peformed. Each message between guardians

would include a pair of timestamps tj and t2 , and a set of gmap entries. The meaning of this

information would be as follows: t2 would be the sender's timestamp, tj would be an earlier

stamp, and the list of gmap entries would consist of those changes occuring "between" tj

and t 2 . In other words, if the recipient's timestamp is greater than or equal to tj, the
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recipient can merge these recent changes with its own gmap and mer~e t2 with its own

stamp, to produce a consistent and sufficiently recent state and stamp, without getting a

new gmap from the generation service. The detailed implementation of this scheme remains

to be developed.

In a large system, it appears that the deadibning method should give better performance

than the server algorithm, provided that the system is loosely coupled. In this case, the

cost of deadlining should depend on the "effective size" of the system, as seen by a guardian

within it. Many done entries should be deleted because their deadlines have expired, before

they have propagated to all of the other guardians. The cost of the server method, on the

other hand, depends on the total size of the system. As explained in Section 7.6, when a

guardian G notifies the generation service of a generation change, all of the other guardians

raay be forced to perform a refresh, even if they do not communicate with G.

If guardians exchange information about recent gmap changei, as suggested above, then

the problem of guardians making too many calls to the generation service in large systems

may be eliminated. When a guardian updated its generation it could include sufficient

information in its hantler calls to make it unnecessary for the recipien to contact the

generation service. Thus, the recipient would not learn of additional generation updates by

other guardians, and the sender would not be forced to call the service again when the call

returned. Experiments are required to determine whether this optimization would make it

practical to use the central server algorithm for systems with a large number of guardians.

One can imagine a large, tightly coupled system, in which done information propagates

rapidly among guardians, and reaches most guardians before being deleted. For such a

system, even the deadlining method may be too inefficient. In this case, done contains

entries for aborts occurring anywhere in the system; it may, therefore, become excessively

large. However, it is not clear that real systems will be this tightly coupled, especially if a

short deadline period is used.
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8.2 Other Orphan Detection Methods

Many other methods (3, 10, 11] of dealing with orphans have been proposed. Most

of these involve preventing orphans from being created, rather than destroying them once

they have been formed. In these algorithms, an action is not permitted to abort until all

of its active descendants have been destroyed. Because of the possibility of communication

failures, the time required to find and destroy an action's remote descendants is unbounded.

Therefore, deadlines are used to limit the time an action must wait before aborting. An

action's descendants are destroyed when their deadlines expire; this allows the parent action

to abort once the deadline has passed.

It may be inconvenient to delay the abort of an action until its descendants have been

destroyed. For example, if an action makes a request to one replica of a distributed service,

and is then unable to communicate with the node at which the request is running, it may

be desirable to abort the request immediately, and attempt to perform it at another site.

This is not possible if the request cannot be aborted until the remote child action has been

dest -yed. The use of deadlines limits the amount by which the abort is delayed; however,

it may be preferable to abort immediately.

If deadlines are used to limit the delay when an action aborts, then it is possible that

some remote calls will need to run beyond their dadlines. This makes it necessary to use

some form of deadline extension, as in the deadliniag optimization of the Argus algorithm.

Deadlines must be chosen carefully, to avoid both excessively frequent extension and long

delays when an action aborts.

It is difficult to compare the performance of this type of orphan elimination mechanism

with the orphan detection algorithm used in Argus. The Argus algorithm produces a fairly

constant orphan detection overhead for each handler call This is especially true for the

deadlining optimization; the central server optimization produces extra overhead when it is

necessary to get a new gmap from the generation service. In contrast, the other methods
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introduce delays when an action is aborted. When comparing the Argus algorithm with the

others, it is not sufficient to determine the total length of all orphan-related delays; it is also

necessary to decide the relative importance of delaying action aborts vs. adding overhead

to each call.

8.3 Future Research

There remain several areas for future research concerning our orphan detection algo-

rithm. One of these is determing how often crucial aborts occur in real systems. Because

the performance of our algorithm depends heavily on the abort rate, it is useful to obtain

realistic values for the frequency of crucial aborts.

Another area for research is the actual behavior of the algorithm in large systems. In

section 7.6 we argued that in large systems, even if loosely coupl.d, it may be necessary for

guardians to obtain new gmaps from the generation service on most calls. When a guardian

G1 notifies the service of a generation change, a new state is returned by the generation

service. The next time G, sends a message to another guardian G2 , G2 is forced to to

perform a refresh to obtain the new state. However, by the time the refresh is performed,

another guardian may have notified the service of a generation change; in this case the

state returned to G2 by the service is even newer than Gj's. When G2 next communicates

with G1, G, is forced to perform a refresh, and may obtain a state even newer than G2 's.

Theoretically, this could go on indefinitely, causing a refresh operation to be performed on

every call and reply. Although this problem can, theoretically, arise in large systems, it

remains to be determined whether it actually occurs in practice.

A third research area is the further optimization of the central server algorithm. In sec-

tion 8.1, a number of optimizations were proposed. It would be interesting to determine how

much they can improve the performance of the algorithm, and whether other optimizations

are possible.

One final question is how to determine the "effective size" of a system for the purposes of
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the deadlhnong algorithm. It would be interesting to know whether the effective size is much

smaller than the total size in most systems. This would indicate whether the deadlining

optimization is practical for systems with many guardians.
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Appendix A

Calculating the Cost of Orphan Detection

Here we present our calculation of the total cost of orphan detection for the deadlining

method and central server algorithm. These calculations are for a system consisting of

a single server, a small number of clients and a one percent abort rate for handler calls.

Each client starts a topaction every 500 msec and makes one handler call to the server per

topaction. Only the cost of the abort orphan part of the algorithm is considered.

A.1 Cost of Deadlining

For the deadlining method, the principal cost of orphan detection is the time needed to

piggyback done in messages, and to merge two copies of done. The cost per handler call

can be calculated by multiplying the done processing time per message by the number of

messages per handler call.

The done processing cost for a message is equal to the size of done multiplied by the

processing time per entry. As shown in Section 7.4, when the deadlining method is used,

the average size of done is (4/230)(n)(dp), where n is the number of clients, and dp is

the deadlining period in seconds. In section 7.3, we determined that the time needed to

piggyback done on a message can be described by the following formula:.

time = 15msec + size-of-done * (240Asec + aid-size * 40,c)

In the example we are considering, the size of each aid in done is three elements. There is
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one element for the call's topaction ancestor, one for the call action and one for the handler

action. Therefore, the cost of piggybacking done is 360psec per entry.

The cost per handler call is three times this amount, because the number of messages

with a piggybacked done is three times the number of handler calls. Each handler call

requires two messages containing a copy of done: the call message, and the reply message.

A third message containing done (the prepare message) is sent during two phase commit

for the call's topaction. (Other messages used in two phase commit do not contain a copy

of done.) If each topaction made several handler calls instead of just one, then the number

of messages with piggybacked copies of done would be a little more than twice the number

of handler calls. The cost of committing the topaction would be divided by the number of

calls the topaction made, to obtain the cost per call

In the deadlining scheme, the cost of merging two similar versions of done is 156,sec per

entry, when each aid has three elements. Combining this with the 360sc per entry cost

of piggybacking gives a total cost of 516psec per entry. Because there are three messages

containing done for each handler call made, the total cost of done processing for each handler

call is 1548psec multiplied by the size of done. Using the calculated value for the size of

done, we find that the total cost of processing done is 27psec(n)(dp).

A.2 Cost of Server Algorithm

For the central server algorithm, the total orphan detection cost is equal to the cost of

processing done when messages are received plus the cost of processing gmap. The cost of

processing done consists of the cost of piggybacking, and the cost of merging an incoming

done with the guardian's own version. The gmap cost is composed of the time for which

handler calls are delayed while a new gmap is obtained from a replica, the time needed to

merge the new gmap with the guardian's own, and the processing time required to delete

old entries from done, using the new gmap information.

For the small systems we are considering in this analysis, the time required to obtain
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a new gmap from a replica is much larger than the time needed to process the new gmnap

after it has been received. In a system with 4 clients, gnmap has 5 elements; in this case

the combined cost of merging gmap and deleting old done entries is less than 10 percent of

the cost of communicating with a replica of the service. Therefore, to simplify our analysis,

we ignore the time needed to merge gmap and to remove old entries from done. We also

ignore the time needed to do gmap processing for a generation update operation. The

communication delay for updates is not included in our cost calculation because update

operations do not delay handler calls; the guardian can still perform normal operations

while waiting for the replica's response.

The cost of piggybacking done when the central server algorithm is used is 360Asec per

entry, the same as for deadlining. In our implementation, the cost of merging two similar

versions of done is 270psec per entry, when each aid has three elements, assuming that gnmap

is small. Therefore the total cost is 630Asec per entry. Because there are three messages

containing done for each handler call made, the total cost of piggybacking for each handler

call is 1980psec multiplied by the size of done.

As shown in Section 7.4, the size of done in a client-server system is approximately

.007n(ui), where n is the number of clients and ui is the generation update interval in

seconds. The cost of processing done is therefore 13.21isec(n)(ui) per handler call.

The cost of communicating with the generation service is calculated by multiplying

the cost of each refresh operation by the ratio of refreshes to handler calls. All refreshes

performed by the client guardian are included in this cost. Refreshes made by the server

are included only if they delay a handler call made by a particular client.

The total time for which a particular client C's handler calls are delayed by commu-

nication with the generation service is equal to the delay per refresh operation multiplied

by the number of refreshes. This time is divided by the number of handler calls made, to

obtain the average delay per call. During a single generation update interval, each client

notifies the service of a generation change exactly once. Each of these updates produces
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one refresh operation that delays one of C's handler calls. When C performs an update, the

server must get a new gmap to process C's next handler call. When any of the other n - 1

clients performs an update, the server gets a new gamp to process that client's next call;

C must then get a new gmap to process the next reply it receives. Therefore, C's calls are

delayed n times per update interval. This means that the probability that a call is delayed

is n(ci/ui), where ci is the interval between calls. In our experiments, ci = 500msec. The

results presented in Figure 7.11 confirm this estimate of the probability that a refresh is

needed to process a call. The refresh probability for a client is dose to (n - 1)(500msec/ui).

For a server the probability is close to (1/2)(SO0msec/ui) per message, or 500msec/ui per

handler call.

For a small system, with a small grap, the time needed to get a new gmap from a replica

is 17 msec. Multiplying by the number of refreshes per handler call gives 8.5msec(n/ui) as

the replica delay per handler call.

Adding together the cost of processing done and the cost of communicating with the

generation service, gives the following formula for the total orphan detection overhead per

handler call:

13.2psec(n)(ui) + 8.Smsec(n)/(ui)

A.3 Cost of Deadline and Generation Extension

We can also calculate the cost of orphan detection in the presence of long actions, when

deadline extension and generation extension are necessary. We will consider the case of an

single, long topaction that never completes. The topaction's handler calls are assumed to

have a 500 msec service time. As soon as one call completes, the next call is made. As in

most of our other examples, we choose a handler call abort rate of one percent.

The cost of deadline extension per handler call is equal to some fixed cost zc per ex-

tension, divided by the number of handler calls that run between extensions. We do not

have data concerning the value of zc; in [12] information is provided about the frequency
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of deadline extension, but not the time required. We will assume that the fixed cost of

extension is equal to 15 msec, roughly the time needed for a low level send and reply. This

seems reasonable, because extension involves changing one table entry and sending one

short message to each of the topaction's active descendants; in our example, each topaction

has only one active descendant at a time.

The total cost of orphan detection is obtained by adding the extension overhead to the

cost in the absence of extension. The cost in the absence of extension is less than before,

because we are no longer committing a topaction after each handler call. This means that

only two messages containing a copy of done, not three, are sent for each call, and the done

processing cost is only two thirds as large. The total orphan detection cost therefore, is

18Asec(n)(ui) + zc(cifdp)

We must also consider the cost of extending actions' generations when the server al-

gorithm is used. We have no data concerning the cost of generation extension, beeause

extension of generations was not implemented for this thesis. It seems reasonable to use

the same estimate for the cost extending deadlines and generations. In both cases, the

amount of processing performed is similar. Like deadline extension, generation extension

is performed once per update interval, in our example with a single, long topaction. (In

some other cases the extension frequencies would not be the same.) This gives the following

estimate for the cost of orphan detection in the presence of generation extension:

8.psec(n)(,i) + (17msec(n) + zc)/(2ui)
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